International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.ijhydene.2021.08.128
V. Molkov 1 , M. Dadashzadeh 2 , S. Kashkarov 1 , D. Makarov 1
The performance of a composite hydrogen storage tank with TPRD in an engulfing fire is studied. The non-adiabatic tank blowdown model, including in fire conditions, using the under-expanded jet theory is described. The model input includes thermal parameters of hydrogen and tank materials, heat flux from a fire to the tank, TPRD diameter and TPRD initiation delay time. The unsteady heat transfer from surroundings through the tank wall and liner to hydrogen accounts for the degradation of the composite overwrap resin and melting of the liner. The model is validated against the blowdown experiment and the destructive fire test with a tank without TPRD. The model accurately reproduces experimentally measured hydrogen pressure and temperature dynamics, blowdown time, and tank's fire-resistance rating, i.e. time to tank rupture in a fire without TPRD. The lower limit for TPRD orifice diameter sufficient to prevent the tank rupture in a fire and, at the same time, to reduce the flame length and mitigate the pressure peaking phenomenon in a garage to exclude its destruction, is assessed for different tanks, e.g. it is 0.75 mm for largest studied 244 L, 70 MPa tank. The phenomenon of Type IV tank liner melting for TPRD with lower diameter is revealed and its influence on hydrogen blowdown is assessed. This phenomenon facilitates the blowdown yet requires further detailed experimental validation.
中文翻译:

TPRD储氢罐在吞没火中的性能
研究了含 TPRD 的复合储氢罐在吞没火灾中的性能。描述了非绝热罐排污模型,包括在火灾条件下,使用欠膨胀射流理论。模型输入包括氢气和储罐材料的热参数、从火灾到储罐的热通量、TPRD 直径和 TPRD 引发延迟时间。从周围环境通过罐壁和内衬到氢气的不稳定热传递是复合外包装树脂降解和内衬熔化的原因。该模型已通过排污实验和使用不带 TPRD 的储罐进行的破坏性火灾测试进行验证。该模型准确地再现了实验测量的氢气压力和温度动态、排污时间和储罐的耐火等级,即 在没有 TPRD 的火灾中罐破裂的时间。TPRD 孔口直径的下限足以防止储罐在火灾中破裂,同时减少火焰长度并减轻车库中的压力峰值现象以排除其破坏,针对不同的储罐进行评估,例如对于最大的 244 L、70 MPa 储罐,最大为 0.75 mm。揭示了小直径 TPRD 的 IV 型罐内衬熔化现象,并评估了其对氢气排污的影响。这种现象有助于排污,但需要进一步详细的实验验证。例如,对于最大的 244 L、70 MPa 储罐,它是 0.75 mm。揭示了小直径 TPRD 的 IV 型罐内衬熔化现象,并评估了其对氢气排污的影响。这种现象有助于排污,但需要进一步详细的实验验证。例如,对于最大的 244 L、70 MPa 储罐,它是 0.75 mm。揭示了小直径 TPRD 的 IV 型罐内衬熔化现象,并评估了其对氢气排污的影响。这种现象有助于排污,但需要进一步详细的实验验证。
