当前位置:
X-MOL 学术
›
Carbon Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells
Carbon Energy ( IF 19.5 ) Pub Date : 2021-08-04 , DOI: 10.1002/cey2.136 Chengyong Shu 1 , Qiang Tan 2 , Chengwei Deng 3 , Wei Du 3 , Zhuofan Gan 1 , Yan Liu 2 , Chao Fan 4 , Hui Jin 4 , Wei Tang 1 , Xiao‐dong Yang 5 , Xiaohua Yang 6 , Yuping Wu 7
Carbon Energy ( IF 19.5 ) Pub Date : 2021-08-04 , DOI: 10.1002/cey2.136 Chengyong Shu 1 , Qiang Tan 2 , Chengwei Deng 3 , Wei Du 3 , Zhuofan Gan 1 , Yan Liu 2 , Chao Fan 4 , Hui Jin 4 , Wei Tang 1 , Xiao‐dong Yang 5 , Xiaohua Yang 6 , Yuping Wu 7
Affiliation
Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal (PGM) catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction (ORR). The high-cost PGM catalyst in fuel cells can be replaced by Earth-abundant transition-metal-based catalysts, that is, an Fe–N–C catalyst, which is considered one of the most promising alternatives. However, the performance of the Fe–N–C catalyst is hindered by the low catalytic activity and poor stability, which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation. Herein, a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented. The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance. The half-wave potential of the catalyst in 0.1 M H2SO4 is 0.82 V versus reversible hydrogen electrode, and the peak power density is 812 mW·cm−2 in H2–O2 fuel cells. Furthermore, it shows superior methanol tolerance, which is almost immune to methanol poisoning and generates up to 162 mW·cm−2 power density in direct methanol fuel cells.
中文翻译:
涂有单原子 Fe-N-C 层的分级介孔碳球,用于平衡燃料电池中的活性和传质
由于需要稀有且昂贵的铂族金属 (PGM) 催化剂来缓解氧还原反应 (ORR) 的缓慢动力学,新型具有成本效益的燃料电池变得更具吸引力。燃料电池中高成本的 PGM 催化剂可以被地球上丰富的过渡金属基催化剂替代,即 Fe-N-C 催化剂,被认为是最有前途的替代品之一。然而,Fe-N-C催化剂的性能受到催化活性低和稳定性差的阻碍,这是由于活性位点不足和三相界面缺乏优化质量传输造成的。在此,提出了一种由单分散的分级介孔碳球核和单个 Fe 原子分散的功能壳组成的新型 Fe-N-C 催化剂。高度分散的 Fe 活性位点和组织良好的多孔结构之间的协同效应产生了高 ORR 活性和高传质性能的结合。0.1 MH 中催化剂的半波电位2 SO 4相对于可逆氢电极为0.82 V ,H 2 -O 2燃料电池的峰值功率密度为812 mW·cm -2 。此外,它显示出优异的甲醇耐受性,几乎不受甲醇中毒的影响,并且在直接甲醇燃料电池中产生高达 162 mW·cm -2的功率密度。
更新日期:2021-08-04
中文翻译:
涂有单原子 Fe-N-C 层的分级介孔碳球,用于平衡燃料电池中的活性和传质
由于需要稀有且昂贵的铂族金属 (PGM) 催化剂来缓解氧还原反应 (ORR) 的缓慢动力学,新型具有成本效益的燃料电池变得更具吸引力。燃料电池中高成本的 PGM 催化剂可以被地球上丰富的过渡金属基催化剂替代,即 Fe-N-C 催化剂,被认为是最有前途的替代品之一。然而,Fe-N-C催化剂的性能受到催化活性低和稳定性差的阻碍,这是由于活性位点不足和三相界面缺乏优化质量传输造成的。在此,提出了一种由单分散的分级介孔碳球核和单个 Fe 原子分散的功能壳组成的新型 Fe-N-C 催化剂。高度分散的 Fe 活性位点和组织良好的多孔结构之间的协同效应产生了高 ORR 活性和高传质性能的结合。0.1 MH 中催化剂的半波电位2 SO 4相对于可逆氢电极为0.82 V ,H 2 -O 2燃料电池的峰值功率密度为812 mW·cm -2 。此外,它显示出优异的甲醇耐受性,几乎不受甲醇中毒的影响,并且在直接甲醇燃料电池中产生高达 162 mW·cm -2的功率密度。