Chinese Chemical Letters ( IF 9.4 ) Pub Date : 2021-01-13 , DOI: 10.1016/j.cclet.2021.01.004 Zejun Zhao , Zailun Liu , Zhixiao Zhu , Fang Wang , Fei Teng , Wenjun Jiang , Yong Yang
Fabrication of well-designed heterojunctions is an extraordinarily attractive pathway for boosting the photocatalytic activity toward CO2 photoreduction. Herein, a novel kind of nanosheet-based intercalation hybrid coupled with CdSe quantum dots (QDs) was successfully fabricated by a facile solvothermal method and served as photocatalyst for full-spectrum-light-driven CO2 reduction. Ultra-small CdSe QDs were rationally in-situ introduced and coupled with lamellar ZnSe-intercalation hybrid nanosheet, resulting in the formation of CdSe QDs/ZnSe hybrid heterojunction. Significantly, the concentration of Cd2+ could change directly the crystallinity and micromorphology of ZnSe intercalation hybrid, which in turn would impact on the photocatalysis activity. The optimized CdSe QDs/ZnSe hybrid-5 composite demonstrated a considerable CO yield rate of the 25.6 μmol g−1 h−1 without any additional cocatalysts or sacrificial agents assisting, making it one of the best reported performance toward CO2 photoreduction under full-spectrum light. The elevated CO2 photoreduction activity could be attributed to the special surface heterojunction, leading to improving the ability of light absorption and promoting the separation/transfer of photogenerated carriers. This present study developed a new strategy for designing inorganic-organic heterojunctions with enhanced photocatalyst for CO2 photoreduction and provided an available way to simultaneously mitigate the greenhouse effect and alleviate energy shortage pressure.
中文翻译:
基于超薄硒化锌纳米片的插层杂化物与 CdSe 量子点耦合显示增强的光催化 CO2 还原
精心设计的异质结的制造是提高光催化活性对 CO 2光还原的非常有吸引力的途径。在此,通过简单的溶剂热法成功制备了一种新型的基于纳米片的插层杂化物与 CdSe 量子点 (QD),并将其用作全光谱光驱动 CO 2还原的光催化剂。超小型 CdSe QDs 被合理地原位引入并与层状 ZnSe 插层杂化纳米片耦合,从而形成 CdSe QDs / ZnSe 杂化异质结。值得注意的是,Cd 2+的浓度可以直接改变ZnSe插层杂化物的结晶度和微观形貌,进而影响光催化活性。优化的 CdSe QDs / ZnSe hybrid-5 复合材料在没有任何额外助催化剂或牺牲剂辅助的情况下表现出 25.6 μmol g -1 h -1的相当大的 CO 产率,使其成为报告的最佳 CO 2 光还原性能之一。光谱光。升高的 CO 2光还原活性可归因于特殊的表面异质结,从而提高光吸收能力并促进光生载流子的分离/转移。本研究开发了一种设计无机-有机异质结的新策略,具有用于 CO 2光还原的增强光催化剂,并提供了一种同时减轻温室效应和缓解能源短缺压力的可用方法。