Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2021-09-02 , DOI: 10.1016/j.apcatb.2021.120675 Zhenfei Yang 1, 2 , Xinnian Xia 1, 2 , Wenwu Yang 1, 2 , Longlu wang 3 , Yutang Liu 4
The molecular oxygen activation (MOA) process tends to be the rate-limiting step for photocatalytic selective organic transformation such as aromatic alcohol oxidation. Herein, using the plasmonic 0D/2D W18O49/ZnIn2S4 (WOZ) heterojunctions as a model system, we firstly shed light on the ultra-efficient MOA origin of the synergism of photothermal effect and continuous hot electrons injection through both experimental and DFT calculations. This synergistic action not only enhances the generation rate of •O2¯ and reduces the activation energy barrier, but also significantly increases the adsorption of the O2 and activates it more easily, thus achieving efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde. Meanwhile, the charge separation and transfer processes involved in O2 activation can be further optimized with the Z-scheme transfer route. This work would provide an exciting opportunity to construct more active photothermal catalysts with ultra-high efficiency of MOA for a wide variety of organic transformations with solar energy.
中文翻译:
光热效应和连续热电子注入协同诱导增强的分子氧活化,用于在等离子体 W18O49/ZnIn2S4 光催化剂上高效选择性氧化苯甲醇
分子氧活化(MOA)过程往往是光催化选择性有机转化(如芳香醇氧化)的限速步骤。在这里,使用等离子体 0D/2D W 18 O 49 /ZnIn 2 S 4 (WOZ) 异质结作为模型系统,我们首先阐明了光热效应和连续热电子通过两者的协同作用的超高效 MOA 起源实验和 DFT 计算。这种协同作用不仅提高了•O 2 ¯的生成率,降低了活化能垒,而且显着增加了O 2的吸附并且更容易活化,从而实现苯甲醇的高效光催化选择性氧化为苯甲醛。同时,通过Z-scheme转移路线可以进一步优化O 2活化中涉及的电荷分离和转移过程。这项工作将为构建具有超高效率 MOA 的更活跃的光热催化剂提供一个令人兴奋的机会,用于太阳能的各种有机转化。