当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Resolution Colloidal Quantum Dot Film Photolithography via Atomic Layer Deposition of ZnO
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-08-31 , DOI: 10.1021/acsami.1c11898 Gi-Hwan Kim , Jongseok Lee , Joon Yup Lee , Jisu Han , Yeongho Choi , Chi Jung Kang , Ki-Bum Kim 1 , Woongkyu Lee , Jaehoon Lim , Seong-Yong Cho
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-08-31 , DOI: 10.1021/acsami.1c11898 Gi-Hwan Kim , Jongseok Lee , Joon Yup Lee , Jisu Han , Yeongho Choi , Chi Jung Kang , Ki-Bum Kim 1 , Woongkyu Lee , Jaehoon Lim , Seong-Yong Cho
Affiliation
High-resolution patterning of quantum dot (QD) films is one of the preconditions for the practical use of QD-based emissive display platforms. Recently, inkjet printing and transfer printing have been actively developed; however, high-resolution patterning is still limited owing to nozzle-clogging issues and coffee ring effects during the inkjet printing and kinetic parameters such as pickup and peeling speed during the transfer process. Consequently, employing direct optical lithography would be highly beneficial owing to its well-established process in the semiconductor industry; however, exposing the photoresist (PR) on top of the QD film deteriorates the QD film underneath. This is because a majority of the solvents for PR easily dissolve the pre-existing QD films. In this study, we present a conventional optical lithography process to obtain solvent resistance by reacting the QD film surface with diethylzinc (DEZ) precursors using atomic layer deposition. It was confirmed that, by reacting the QD surface with DEZ and coating PR directly on top of the QD film, a typical photolithography process can be performed to generate a red/green/blue pixel of 3000 ppi or more. QD electroluminescence devices were fabricated with all primary colors of QDs; moreover, compared to reference QD-LED devices, the patterned QD-LED devices exhibited enhanced brightness and efficiency.
中文翻译:
通过 ZnO 原子层沉积实现高分辨率胶体量子点膜光刻
量子点 (QD) 薄膜的高分辨率图案化是基于 QD 的发光显示平台实际使用的先决条件之一。最近,喷墨印刷和转移印刷得到了积极的发展;然而,由于喷墨打印过程中的喷嘴堵塞问题和咖啡环效应以及转移过程中的拾取和剥离速度等动力学参数,高分辨率图案化仍然受到限制。因此,由于其在半导体行业中的成熟工艺,采用直接光刻技术将非常有益。然而,暴露 QD 薄膜顶部的光刻胶 (PR) 会损坏下方的 QD 薄膜。这是因为大部分 PR 溶剂很容易溶解预先存在的 QD 薄膜。在这项研究中,我们提出了一种传统的光刻工艺,通过使用原子层沉积使 QD 膜表面与二乙基锌 (DEZ) 前体反应来获得耐溶剂性。经证实,通过使 QD 表面与 DEZ 反应并直接在 QD 薄膜顶部涂覆 PR,可以执行典型的光刻工艺以生成 3000 ppi 或更高的红/绿/蓝像素。QD 电致发光器件由 QD 的所有原色制成;此外,与参考 QD-LED 器件相比,图案化 QD-LED 器件表现出更高的亮度和效率。可以执行典型的光刻工艺以生成 3000 ppi 或更高的红色/绿色/蓝色像素。QD 电致发光器件由 QD 的所有原色制成;此外,与参考 QD-LED 器件相比,图案化 QD-LED 器件表现出更高的亮度和效率。可以执行典型的光刻工艺以生成 3000 ppi 或更高的红色/绿色/蓝色像素。QD 电致发光器件由 QD 的所有原色制成;此外,与参考 QD-LED 器件相比,图案化 QD-LED 器件表现出更高的亮度和效率。
更新日期:2021-09-15
中文翻译:
通过 ZnO 原子层沉积实现高分辨率胶体量子点膜光刻
量子点 (QD) 薄膜的高分辨率图案化是基于 QD 的发光显示平台实际使用的先决条件之一。最近,喷墨印刷和转移印刷得到了积极的发展;然而,由于喷墨打印过程中的喷嘴堵塞问题和咖啡环效应以及转移过程中的拾取和剥离速度等动力学参数,高分辨率图案化仍然受到限制。因此,由于其在半导体行业中的成熟工艺,采用直接光刻技术将非常有益。然而,暴露 QD 薄膜顶部的光刻胶 (PR) 会损坏下方的 QD 薄膜。这是因为大部分 PR 溶剂很容易溶解预先存在的 QD 薄膜。在这项研究中,我们提出了一种传统的光刻工艺,通过使用原子层沉积使 QD 膜表面与二乙基锌 (DEZ) 前体反应来获得耐溶剂性。经证实,通过使 QD 表面与 DEZ 反应并直接在 QD 薄膜顶部涂覆 PR,可以执行典型的光刻工艺以生成 3000 ppi 或更高的红/绿/蓝像素。QD 电致发光器件由 QD 的所有原色制成;此外,与参考 QD-LED 器件相比,图案化 QD-LED 器件表现出更高的亮度和效率。可以执行典型的光刻工艺以生成 3000 ppi 或更高的红色/绿色/蓝色像素。QD 电致发光器件由 QD 的所有原色制成;此外,与参考 QD-LED 器件相比,图案化 QD-LED 器件表现出更高的亮度和效率。可以执行典型的光刻工艺以生成 3000 ppi 或更高的红色/绿色/蓝色像素。QD 电致发光器件由 QD 的所有原色制成;此外,与参考 QD-LED 器件相比,图案化 QD-LED 器件表现出更高的亮度和效率。