当前位置: X-MOL 学术Alex. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A piezoelectric MEMS microphone optimizer platform
Alexandria Engineering Journal ( IF 6.2 ) Pub Date : 2021-08-26 , DOI: 10.1016/j.aej.2021.08.044
Ahmed Fawzy 1 , Ahmed Magdy 2 , Aya Hossam 3
Affiliation  

Nowadays, the piezoelectric transduction mechanism has a great concern to be used in the (micro-electromechanical systems) MEMS microphones. In piezoelectric microphones, the thickness, length, width of the piezoelectric and electrode materials are key parameters that need to be optimized in the design loop. The sensitivity is also another vital design factor for MEMS microphones. One common scenario in modeling the sensitivity is to build an electrical equivalent model from lumped components in any simulator. This approach generally requires specialist design expertise and substantial time to build a complete equivalent model. In this paper, a powerful simulation platform to design high-performance cantilever piezoelectric MEMS microphones with sensitivity estimation has been presented. This simulation platform, called MEMS microphone optimizer platform (MMOP), can predict a wide range of key issues related to the successful design of a MEMS Microphone such as the optimum values of piezoelectric material thickness, electrode material thickness, and the length of a cantilever. MMOP offers also the capability to simulate sensitivity directly from the input parameters of the designed model. To validate the proposed simulation platform, a real model of a cantilever MEMS microphone has been studied. In the performed simulations and analysis, sweeping dimensions in micrometer have been considered to predict the best performance. In the proposed model, Aluminum nitride (AlN) and molybdenum (Mo) were utilized as the piezoelectric material and electrode materials, respectively. A high agreement has been found between the theoretical results and the output of the MMOP platform. The platform opens the door for a fast optimized design with accurate results. Finally, MMOP enables a designer to simulate key issues that are specific to cantilever MEMS microphones, including optimized thickness values and predicted sensitivity.



中文翻译:

压电MEMS麦克风优化器平台

如今,压电换能机制在(微机电系统)MEMS麦克风中的应用备受关注。在压电麦克风中,压电材料和电极材料的厚度、长度、宽度是设计回路中需要优化的关键参数。 灵敏度也是 MEMS 麦克风的另一个重要设计因素。建模灵敏度的一种常见情况是在任何模拟器中从集总组件构建电气等效模型。这种方法通常需要专业的设计专业知识和大量时间来构建完整的等效模型。在本文中,提出了一个强大的仿真平台,用于设计具有灵敏度估计的高性能悬臂压电 MEMS 麦克风。该仿真平台称为 MEMS 麦克风优化器平台 (MMOP),可以预测与成功设计 MEMS 麦克风相关的各种关键问题,例如压电材料厚度、电极材料厚度和悬臂长度的最佳值. MMOP 还提供了直接从设计模型的输入参数模拟灵敏度的能力。为了验证所提出的仿真平台,我们研究了悬臂 MEMS 麦克风的真实模型。在执行的模拟和分析中,已考虑以微米为单位的扫描尺寸来预测最佳性能。在所提出的模型中,氮化铝 (AlN) 和钼 (Mo) 分别用作压电材料和电极材料。在理论结果和 MMOP 平台的输出之间发现了高度的一致性。该平台为快速优化设计和准确结果打开了大门。最后,MMOP 在执行的模拟和分析中,已考虑以微米为单位的扫描尺寸来预测最佳性能。在所提出的模型中,氮化铝 (AlN) 和钼 (Mo) 分别用作压电材料和电极材料。在理论结果和 MMOP 平台的输出之间发现了高度的一致性。该平台为快速优化设计和准确结果打开了大门。最后,MMOP 在执行的模拟和分析中,已考虑以微米为单位的扫描尺寸来预测最佳性能。在所提出的模型中,氮化铝 (AlN) 和钼 (Mo) 分别用作压电材料和电极材料。在理论结果和 MMOP 平台的输出之间发现了高度的一致性。该平台为快速优化设计和准确结果打开了大门。最后,MMOP 该平台为快速优化设计和准确结果打开了大门。最后,MMOP 该平台为快速优化设计和准确结果打开了大门。最后,MMOP 使设计人员能够模拟悬臂 MEMS 麦克风特有的关键问题,包括优化的厚度值和预测的灵敏度。

更新日期:2021-08-26
down
wechat
bug