当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Self-Powered Piezo-Bioelectric Device Regulates Tendon Repair-Associated Signaling Pathways through Modulation of Mechanosensitive Ion Channels
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-23 , DOI: 10.1002/adma.202008788 Marc A Fernandez-Yague 1 , Alexandre Trotier 1 , Secil Demir 1 , Sunny Akogwu Abbah 1 , Aitor Larrañaga 1, 2 , Arun Thirumaran 1 , Aimee Stapleton 3 , Syed A M Tofail 3 , Matteo Palma 4 , Michelle Kilcoyne 1 , Abhay Pandit 1 , Manus J Biggs 1
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-23 , DOI: 10.1002/adma.202008788 Marc A Fernandez-Yague 1 , Alexandre Trotier 1 , Secil Demir 1 , Sunny Akogwu Abbah 1 , Aitor Larrañaga 1, 2 , Arun Thirumaran 1 , Aimee Stapleton 3 , Syed A M Tofail 3 , Matteo Palma 4 , Michelle Kilcoyne 1 , Abhay Pandit 1 , Manus J Biggs 1
Affiliation
Tendon disease constitutes an unmet clinical need and remains a critical challenge in the field of orthopaedic surgery. Innovative solutions are required to overcome the limitations of current tendon grafting approaches, and bioelectronic therapies show promise in treating musculoskeletal diseases, accelerating functional recovery through the activation of tissue regeneration-specific signaling pathways. Self-powered bioelectronic devices, particularly piezoelectric materials, represent a paradigm shift in biomedicine, negating the need for battery or external powering and complementing existing mechanotherapy to accelerate the repair processes. Here, the dynamic response of tendon cells to a piezoelectric collagen-analogue scaffold comprised of aligned nanoscale fibers made of the ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) is shown. It is demonstrated that motion-powered electromechanical stimulation of tendon tissue through piezo-bioelectric device results in ion channel modulation in vitro and regulates specific tissue regeneration signaling pathways. Finally, the potential of the piezo-bioelectronic device in modulating the progression of tendinopathy-associated processes in vivo, using a rat Achilles acute injury model is shown. This study indicates that electromechanical stimulation regulates mechanosensitive ion channel sensitivity and promotes tendon-specific over non-tenogenic tissue repair processes.
中文翻译:
自供电压电生物电装置通过调节机械敏感离子通道来调节肌腱修复相关的信号通路
肌腱疾病构成了未满足的临床需求,并且仍然是骨科手术领域的关键挑战。需要创新的解决方案来克服当前肌腱移植方法的局限性,生物电子疗法在治疗肌肉骨骼疾病方面显示出前景,通过激活组织再生特异性信号通路加速功能恢复。自供电生物电子设备,尤其是压电材料,代表了生物医学的范式转变,无需电池或外部电源,并补充了现有的机械疗法以加速修复过程。在这里,显示了肌腱细胞对压电胶原模拟支架的动态响应,该支架由铁电材料聚(偏二氟乙烯-共三氟乙烯)制成的排列纳米级纤维组成。结果表明,通过压电生物电装置对肌腱组织进行运动驱动的机电刺激可在体外产生离子通道调节并调节特定的组织再生信号通路。最后,使用大鼠跟腱急性损伤模型显示了压电生物电子器件在调节体内肌腱病相关过程进展的潜力。这项研究表明,机电刺激调节机械敏感的离子通道敏感性,并促进肌腱特异性而不是非肌腱形成的组织修复过程。
更新日期:2021-10-06
中文翻译:
自供电压电生物电装置通过调节机械敏感离子通道来调节肌腱修复相关的信号通路
肌腱疾病构成了未满足的临床需求,并且仍然是骨科手术领域的关键挑战。需要创新的解决方案来克服当前肌腱移植方法的局限性,生物电子疗法在治疗肌肉骨骼疾病方面显示出前景,通过激活组织再生特异性信号通路加速功能恢复。自供电生物电子设备,尤其是压电材料,代表了生物医学的范式转变,无需电池或外部电源,并补充了现有的机械疗法以加速修复过程。在这里,显示了肌腱细胞对压电胶原模拟支架的动态响应,该支架由铁电材料聚(偏二氟乙烯-共三氟乙烯)制成的排列纳米级纤维组成。结果表明,通过压电生物电装置对肌腱组织进行运动驱动的机电刺激可在体外产生离子通道调节并调节特定的组织再生信号通路。最后,使用大鼠跟腱急性损伤模型显示了压电生物电子器件在调节体内肌腱病相关过程进展的潜力。这项研究表明,机电刺激调节机械敏感的离子通道敏感性,并促进肌腱特异性而不是非肌腱形成的组织修复过程。