当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On the unicity of the theory of higher categories
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-04-20 , DOI: 10.1090/jams/972 Clark Barwick , Christopher Schommer-Pries
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-04-20 , DOI: 10.1090/jams/972 Clark Barwick , Christopher Schommer-Pries
Abstract:We axiomatise the theory of $(\infty ,n)$-categories. We prove that the space of theories of $(\infty ,n)$-categories is a $B(\mathbb {Z}/2)^n$. We prove that Rezk’s complete Segal $\Theta _n$ spaces, Simpson and Tamsamani’s Segal $n$-categories, the first author’s $n$-fold complete Segal spaces, Kan and the first author’s $n$-relative categories, and complete Segal space objects in any model of $(\infty , n-1)$-categories all satisfy our axioms. Consequently, these theories are all equivalent in a manner that is unique up to the action of $(\mathbb {Z}/2)^n$.
中文翻译:
论高范畴论的唯一性
摘要:我们公理化了 $(\infty ,n)$-categories 的理论。我们证明$(\infty ,n)$-categories 的理论空间是$B(\mathbb {Z}/2)^n$。我们证明了 Rezk 的完全 Segal $\Theta _n$ 空间、Simpson 和 Tamsamani 的 Segal $n$-categories、第一作者的 $n$-fold 完全 Segal 空间、Kan 和第一作者的 $n$-relative 类别以及完全 Segal $(\infty , n-1)$-categories 的任何模型中的空间对象都满足我们的公理。因此,这些理论在 $(\mathbb {Z}/2)^n$ 的作用下都是唯一的。
更新日期:2021-04-20
中文翻译:
论高范畴论的唯一性
摘要:我们公理化了 $(\infty ,n)$-categories 的理论。我们证明$(\infty ,n)$-categories 的理论空间是$B(\mathbb {Z}/2)^n$。我们证明了 Rezk 的完全 Segal $\Theta _n$ 空间、Simpson 和 Tamsamani 的 Segal $n$-categories、第一作者的 $n$-fold 完全 Segal 空间、Kan 和第一作者的 $n$-relative 类别以及完全 Segal $(\infty , n-1)$-categories 的任何模型中的空间对象都满足我们的公理。因此,这些理论在 $(\mathbb {Z}/2)^n$ 的作用下都是唯一的。