当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spontaneous Topological Magnetic Transitions in NdCo5 Rare-Earth Magnets
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-17 , DOI: 10.1002/adma.202103751
Shulan Zuo 1 , Jun Liu 2 , Kaiming Qiao 3 , Ying Zhang 2 , Jie Chen 2 , Na Su 2 , Yanli Liu 4 , Jun Cao 1 , Tongyun Zhao 2 , Jingmin Wang 1 , Fengxia Hu 2 , Jirong Sun 2 , Chengbao Jiang 1 , Baogen Shen 2
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-17 , DOI: 10.1002/adma.202103751
Shulan Zuo 1 , Jun Liu 2 , Kaiming Qiao 3 , Ying Zhang 2 , Jie Chen 2 , Na Su 2 , Yanli Liu 4 , Jun Cao 1 , Tongyun Zhao 2 , Jingmin Wang 1 , Fengxia Hu 2 , Jirong Sun 2 , Chengbao Jiang 1 , Baogen Shen 2
Affiliation
![]() |
Particle-like magnetic textures with nanometric sizes, such as skyrmions, are potentially suitable for designing high-efficiency information bits in future spintronics devices. In general, the Dzyaloshinskii–Moriya interactions and dipolar interactions are the dominant factors for generating nonlinear spin configurations. However, to stabilize the topological skyrmions, an external magnetic field is usually required. In this study, the spontaneous emergence of skyrmions is directly observed, together with the unique successive topological domain evolution during the spin reorientation transition in a neodymium–cobalt (NdCo5) rare-earth magnet. On decreasing the temperature, nanometric skyrmion lattices evolve into enclosed in-plane domains (EIPDs) similar to mini bar-magnets with size below 120 nm. The internal magnetization rotates with magnetic anisotropy, demonstrating the ability to manipulate the mini bar-magnets. The nanoscale EIPD lattices remain robust over the wide temperature range of 241–167 K, indicating the possibility of high-density in-plane magnetic information storage. The generation of spontaneous magnetic skyrmions and the successive domain transformation in the traditional NdCo5 rare-earth magnet may prompt application exploration for topological magnetic spin textures with novel physical mechanisms in versatile magnets.
中文翻译:
NdCo5 稀土磁铁中的自发拓扑磁跃迁
具有纳米尺寸的粒子状磁性结构,例如斯格明子,可能适合在未来的自旋电子器件中设计高效信息位。一般来说,Dzyaloshinskii-Moriya 相互作用和偶极相互作用是产生非线性自旋构型的主要因素。然而,为了稳定拓扑斯格明子,通常需要外部磁场。在这项研究中,直接观察到了自旋子的自发出现,以及在钕 - 钴(NdCo 5) 稀土磁铁。在降低温度时,纳米斯格明子晶格演变成封闭的面内畴 (EIPD),类似于尺寸低于 120 nm 的迷你条形磁铁。内部磁化随磁各向异性旋转,展示了操纵迷你条形磁铁的能力。纳米级 EIPD 晶格在 241-167 K 的宽温度范围内保持稳健,表明高密度面内磁信息存储的可能性。传统 NdCo 5稀土磁体中自发磁性斯格明子的产生和连续畴变可能会促进对具有新物理机制的拓扑磁自旋结构在多功能磁体中的应用探索。
更新日期:2021-10-06
中文翻译:

NdCo5 稀土磁铁中的自发拓扑磁跃迁
具有纳米尺寸的粒子状磁性结构,例如斯格明子,可能适合在未来的自旋电子器件中设计高效信息位。一般来说,Dzyaloshinskii-Moriya 相互作用和偶极相互作用是产生非线性自旋构型的主要因素。然而,为了稳定拓扑斯格明子,通常需要外部磁场。在这项研究中,直接观察到了自旋子的自发出现,以及在钕 - 钴(NdCo 5) 稀土磁铁。在降低温度时,纳米斯格明子晶格演变成封闭的面内畴 (EIPD),类似于尺寸低于 120 nm 的迷你条形磁铁。内部磁化随磁各向异性旋转,展示了操纵迷你条形磁铁的能力。纳米级 EIPD 晶格在 241-167 K 的宽温度范围内保持稳健,表明高密度面内磁信息存储的可能性。传统 NdCo 5稀土磁体中自发磁性斯格明子的产生和连续畴变可能会促进对具有新物理机制的拓扑磁自旋结构在多功能磁体中的应用探索。