当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Defect-Rich MoO3 Nanobelt Cathode for a High-Performance Hybrid Alkali/Acid Zn-MoO3 Rechargeable Battery
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-08-15 , DOI: 10.1021/acssuschemeng.1c03823 Pingwei Cai 1 , Junxiang Chen 1 , Yichun Ding 1 , Yangjie Liu 1 , Zhenhai Wen 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-08-15 , DOI: 10.1021/acssuschemeng.1c03823 Pingwei Cai 1 , Junxiang Chen 1 , Yichun Ding 1 , Yangjie Liu 1 , Zhenhai Wen 1
Affiliation
Protons (H+) and hydroxide ions (OH–) are regarded as ideal charge carriers for rechargeable batteries thanks to their small size, high ion mobility, low cost, and wide flexibility compared to the metal ions. However, the implementation of storage of both H+ and OH– in one electrochemical energy device faces grand challenges due to incompatibility between H+ and OH–. Herein, we report an alkali-acid Zn-MoO3 hybrid battery that employs H+ and OH– as charge carriers of the cathode and anode, respectively, in which the insertion/deinsertion of H+ take place on the defect-rich MoO3 porous nanobelt (d-MoO3 PNB) cathode in acid while OH– are involved in the alkaline conversion of Zn anode, which offers a promising route to better address the incompatible issues of H+ and OH– in one system. The d-MoO3 PNB with abundant oxygen vacancies holds more favorable properties for H+ storage than the MoO3 NB, as verified by the fact that the former can deliver significantly enhanced capacity and robust stability relative to the latter. The density functional theory (DFT) calculations demonstrate that the d-MoO3 can lower the barrier for H+ storage with improved conductivity, which is beneficial for improving the electrochemical performance. As a result, the alkali-acid Zn-MoO3 hybrid battery can deliver a high open-circuit voltage of 1.85 V, a high rate capability of 158 mAh g–1 at a current density of 5 A g–1, and excellent capacity retention of above 90% over 200 cycles. This work sheds light on the development of aqueous energy devices with high voltage and energy density through materials engineering and device optimization.
中文翻译:
用于高性能混合碱/酸 Zn-MoO3 可充电电池的缺陷丰富的 MoO3 纳米带阴极
与金属离子相比,质子 (H + ) 和氢氧根离子 (OH - ) 具有体积小、离子迁移率高、成本低和灵活性高等优点,被认为是可充电电池的理想电荷载体。然而,由于 H +和 OH -之间的不相容性,在一个电化学能源装置中同时存储 H +和 OH -面临着巨大的挑战。在此,我们报道了一种碱-酸 Zn-MoO 3混合电池,该电池采用 H +和 OH -作为阴极和阳极的电荷载流子,其中 H +的插入/脱嵌发生在富含缺陷的 MoO3多孔纳米带 (d-MoO 3 PNB) 阴极在酸中,而 OH -参与锌阳极的碱性转化,这提供了一条有希望的途径,以更好地解决 H +和 OH -在一个系统中的不相容问题。与MoO 3 NB相比,具有丰富氧空位的 d-MoO 3 PNB 具有更有利的 H +存储特性,事实证明,前者可以提供显着增强的容量和相对于后者的稳健稳定性。密度泛函理论 (DFT) 计算表明 d-MoO 3可以降低 H +的势垒电导率提高,有利于提高电化学性能。因此,碱酸Zn-MoO 3混合电池可提供1.85 V的高开路电压、5 A g –1电流密度下158 mAh g –1的高倍率性能和优异的容量在 200 次循环中保持率超过 90%。这项工作揭示了通过材料工程和设备优化开发具有高电压和能量密度的水性能源设备。
更新日期:2021-08-30
中文翻译:
用于高性能混合碱/酸 Zn-MoO3 可充电电池的缺陷丰富的 MoO3 纳米带阴极
与金属离子相比,质子 (H + ) 和氢氧根离子 (OH - ) 具有体积小、离子迁移率高、成本低和灵活性高等优点,被认为是可充电电池的理想电荷载体。然而,由于 H +和 OH -之间的不相容性,在一个电化学能源装置中同时存储 H +和 OH -面临着巨大的挑战。在此,我们报道了一种碱-酸 Zn-MoO 3混合电池,该电池采用 H +和 OH -作为阴极和阳极的电荷载流子,其中 H +的插入/脱嵌发生在富含缺陷的 MoO3多孔纳米带 (d-MoO 3 PNB) 阴极在酸中,而 OH -参与锌阳极的碱性转化,这提供了一条有希望的途径,以更好地解决 H +和 OH -在一个系统中的不相容问题。与MoO 3 NB相比,具有丰富氧空位的 d-MoO 3 PNB 具有更有利的 H +存储特性,事实证明,前者可以提供显着增强的容量和相对于后者的稳健稳定性。密度泛函理论 (DFT) 计算表明 d-MoO 3可以降低 H +的势垒电导率提高,有利于提高电化学性能。因此,碱酸Zn-MoO 3混合电池可提供1.85 V的高开路电压、5 A g –1电流密度下158 mAh g –1的高倍率性能和优异的容量在 200 次循环中保持率超过 90%。这项工作揭示了通过材料工程和设备优化开发具有高电压和能量密度的水性能源设备。