太阳能光伏 (PV) 系统的电能转换受 PV 模块温度的显着影响,其中模块过热会导致发电量下降。光伏/热能 (PVT) 太阳能混合系统通过使用传热流体 (HTF) 同时冷却具有热能输出的 PV 来产生更多电力。通过实验研究了使用热能存储 (TES) 和两个 HTF 的 PVT 混合太阳能集热器的性能,以改善 PV 系统的电能输出和半导体的温度分布。室外读数在二月和七月测量,以确定 PVT 的电和热响应的变化。流速为 0.00833 kg/s 的水处于自然循环模式,空气通过鼓风机以 0.0069 kg/s 的速度循环通过通道。提供两个进水口和出水口以改善面板温度分布。通过布置容器来增强气流路径,这些容器将气流向容器的两侧分开和分配。选用OM42作为相变材料(PCM),十三个容器附有铜吸收片。研究表明,混合冷却 PVT 集热器通过显着降低面板温度(最高温度下降 7.5 °C)来增强电能转换。2月份混合面板的最高电效率为15.71%,比传统面板高约22%。在恒定的水和气流速率下,最大的热回收效率和总回收效率分别为 69.25% 和 84.40%。7 月份,观察到最高电效率为 15.2%,比传统光伏系统高约 22%。观察到的最大热效率和总效率分别为 70.8% 和 85.7%。拟议的混合 PVT 系统的经济和环境分析表明,与传统光伏系统相比,碳排放量相对较少,投资回收期也较短。本混合 PVT 设计同时有效地产生电力、热空气和热水。拟议的混合 PVT 系统的经济和环境分析表明,与传统光伏系统相比,碳排放量相对较少,投资回收期也较短。本混合 PVT 设计同时有效地产生电力、热空气和热水。拟议的混合 PVT 系统的经济和环境分析表明,与传统光伏系统相比,碳排放量相对较少,投资回收期也较短。本混合 PVT 设计同时有效地产生电力、热空气和热水。
"点击查看英文标题和摘要"
An experimental study on simultaneous electricity and heat production from solar PV with thermal energy storage
Electrical energy conversion of solar photovoltaic (PV) systems is significantly influenced by the PV module temperature, where the overheating of the module leads to a drop in power generation. A photovoltaic/thermal (PVT) solar hybrid system produces more electrical power by simultaneously cooling the PV with thermal energy output using heat transfer fluids (HTF). The performance of a PVT hybrid solar collector using thermal energy storage (TES) and two HTFs is experimentally investigated to improve the PV system's electrical energy output and the semi-conductor's temperature distribution. The outdoor readings are measured in February and July to determine the variations in the electrical and thermal responses of the PVT. Water at a flow rate of 0.00833 kg/s is in natural circulation mode, and the air is circulated through the channel at 0.0069 kg/s using a blower. Two water inlets and outlets are provided to improve the panel temperature distribution. The airflow path is enhanced by arranging containers that split and distribute the airflow towards the two sides of the containers. OM42 is selected as a phase change material (PCM), and thirteen containers are attached with a copper absorber sheet. The study shows that the hybrid cooling PVT collector enhances electrical power conversion by reducing panel temperature significantly—a maximum temperature drop of 7.5 °C. The maximum electrical efficiency of the hybrid panel in February is 15.71% which is about 22% higher than the conventional panel. The maximum thermal and overall recovery efficiencies are maximum of 69.25% and 84.40%, respectively, at constant water and airflow rates. In July, the maximum electrical efficiency of 15.2% is observed, which is about 22% higher than that of conventional PV system. The maximum thermal and overall efficiencies are observed to be 70.8% and 85.7%, respectively. The economic and environmental analysis of the proposed hybrid PVT system shows comparatively lesser carbon emissions and quicker payback periods than that of the conventional PV system. The present hybrid PVT design effectively produces electricity, hot air, and hot water simultaneously and effectively.