Propamocarb 是一种内吸性氨基甲酸酯类杀菌剂,用于对抗疾病。在野生型 (WT) 和 ApoE 敲除 (ApoE -/-) 老鼠。给 C57BL/6 J WT 小鼠喂食对照饮食或高脂饮食 (HFD),在饮用水中加入 20 mg/L 丙霉威,持续 24 周。Propamocarb 显着增加甘油三酯、胆固醇和低密度脂蛋白胆固醇的血清水平,同时降低高密度脂蛋白胆固醇。同时,丙霉威促进肝脏中的脂质积累,增加肝脏和回肠中胆固醇合成和转运基因的表达。在喂食 HFD 的丙霉威处理小鼠的主动脉根部观察到脂质积累,在全主动脉染色中也观察到类似的结果。此外,丙霉威暴露显着增加了IL-1β、TNF-α、ICAM-1和VCAM-1的 mRNA 水平在用丙胺卡威治疗的 HFD 组中的主动脉和血清 IL-1β、IL-6 和 TNF-α 水平。在 ApoE -/-小鼠中,结果与 WT 小鼠在暴露于 20 mg/L 丙霉威 10 周后获得的结果一致。同时,丙霉威显着增加了 ApoE -/-小鼠主动脉中 CD36、NF-κB、VCAM-1 和 ICAM-1 蛋白的水平。Propamocarb 进一步破坏胆固醇代谢,更大幅度地增强动脉粥样硬化和炎症反应,表明 Propamocarb 具有加速动脉粥样硬化形成的潜力。对肠道微生物群的分析表明,丙霉威改变了 WT 和 ApoE -/-小鼠肠道微生物群的组成。有趣的是,propamocarb 增加了消化链球菌科、瘤胃球菌科和梭菌属_VadinBB60_group,在家族水平上与动脉粥样硬化有关。与动脉粥样硬化密切相关的类梭菌属、异芽孢杆菌属和梭菌属的丰度也因丙霉威暴露而增加。我们的研究结果表明,丙霉威暴露可能通过破坏脂质代谢、增加炎症反应和改变肠道微生物群的结构来促进动脉粥样硬化。
"点击查看英文标题和摘要"
Propamocarb exposure has the potential to accelerate the formation of atherosclerosis in both WT and ApoE−/− mice accompanied by gut microbiota dysbiosis
Propamocarb is a systemic carbamate fungicide used to fight diseases. The effect of propamocarb on the formation of atherosclerosis was evaluated in wild-type (WT) and ApoE knockout (ApoE−/−) mice. C57BL/6 J WT mice were fed control diet or high-fat diet (HFD) with 20 mg/L propamocarb in drinking water for 24 weeks. Propamocarb significantly increased the serum levels of triglyceride, cholesterol and low-density lipoprotein cholesterol while decreasing high-density lipoprotein cholesterol. Simultaneously, propamocarb facilitated lipid accumulation in the liver and increased the expression of cholesterol synthesis and transport genes in the liver and ileum. Lipid accumulation was observed in the aortic roots of the propamocarb-treated mice fed HFD, and similar results were also observed with whole aorta staining. In addition, propamocarb exposure significantly increased the mRNA levels of IL-1β, TNF-α, ICAM-1, and VCAM-1 in the aorta and the serum IL-1β, IL-6, and TNF-α levels in HFD groups treated with propamocarb. In ApoE−/− mice, the results were consistent with those obtained in WT mice after exposure to 20 mg/L propamocarb for 10 weeks. Meanwhile, propamocarb significantly increased the levels of CD36, NF-κB, VCAM-1 and ICAM-1 proteins in the aortas of ApoE−/− mice. Propamocarb further disrupted cholesterol metabolism and enhanced atherosclerosis and inflammatory responses much more substantially, indicating that propamocarb has the potential to accelerate the formation of atherosclerosis. An analysis of gut microbiota revealed that propamocarb altered the composition of gut microbiota in both WT and ApoE−/− mice. Interestingly, propamocarb increased the abundance of Peptostreptococcaceae, Ruminococcaceae, and Clostridiales_VadinBB60_group, which are related to atherosclerosis at the family level. The abundance of Paeniclostridium, Allobaculum, and Clostridioides, which are closely related to atherosclerosis, was also increased by propamocarb exposure. Our findings indicate that propamocarb exposure may promote atherosclerosis by disrupting lipid metabolism, increasing the inflammatory response, and altering the structure of gut microbiota.