当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Assembled Monolayers for Batteries
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-08-11 , DOI: 10.1021/jacs.1c04416 Ruowei Yi 1 , Yayun Mao 1 , Yanbin Shen 1 , Liwei Chen 1, 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2021-08-11 , DOI: 10.1021/jacs.1c04416 Ruowei Yi 1 , Yayun Mao 1 , Yanbin Shen 1 , Liwei Chen 1, 2
Affiliation
Current studies in the Li-battery field are focusing on building systems with higher energy density than ever before. The path toward this goal, however, should not ignore aspects such as safety, stability, and cycling life. These issues frequently originate from interfacial instability, and therefore, precise surface chemistry that allows for accurate control of material surface and interfaces is much in demand for advanced battery research. Molecular self-assembly as a surface chemistry tool is considered to surpass many conventional coating techniques due to its intrinsic merits such as spontaneous organization, molecular-scale uniformity, and structural diversity. Recent publications have demonstrated the power of self-assembled monolayers (SAMs) in addressing pressing issues in the battery field such as the chemical stability of Li, but many more investigations are needed to fully explore the potential and impact of this technique on energy storage. This perspective is the first of its kind devoted to SAMs in batteries and related materials. Recent research progress on SAMs in batteries is reviewed and mainly falls in two categories, including the improvement of chemical stability and the regulation of nucleation in conversion electrode reactions. Future applications and consideration of SAMs in energy storage are discussed. We believe these summaries and outlooks are highly stimulative and may benefit future advancements in battery chemistry.
中文翻译:
用于电池的自组装单层膜
目前锂电池领域的研究重点是构建能量密度比以往任何时候都高的系统。然而,实现这一目标的道路不应忽视安全性、稳定性和骑行寿命等方面。这些问题通常源于界面不稳定性,因此,能够准确控制材料表面和界面的精确表面化学对于先进的电池研究是非常需要的。分子自组装作为一种表面化学工具,由于其固有的优点,如自发组织、分子尺度均匀性和结构多样性,被认为超越了许多传统的涂层技术。最近的出版物已经证明了自组装单分子层 (SAM) 在解决电池领域的紧迫问题(例如锂的化学稳定性)方面的能力,但还需要更多的研究来充分探索这种技术对储能的潜力和影响。这种观点是第一个致力于电池和相关材料中的 SAM。综述了电池中SAMs的最新研究进展,主要分为两类,包括化学稳定性的提高和转换电极反应中成核的调节。讨论了 SAM 在储能中的未来应用和考虑。我们相信这些总结和展望具有高度刺激性,可能有利于电池化学的未来发展。综述了近年来电池中SAMs的研究进展,主要分为两类,包括化学稳定性的提高和转换电极反应中成核的调节。讨论了 SAM 在储能中的未来应用和考虑。我们相信这些总结和展望具有高度刺激性,可能有利于电池化学的未来发展。综述了近年来电池中SAMs的研究进展,主要分为两类,包括化学稳定性的提高和转换电极反应中成核的调节。讨论了 SAM 在储能中的未来应用和考虑。我们相信这些总结和展望具有高度刺激性,可能有利于电池化学的未来发展。
更新日期:2021-08-25
中文翻译:
用于电池的自组装单层膜
目前锂电池领域的研究重点是构建能量密度比以往任何时候都高的系统。然而,实现这一目标的道路不应忽视安全性、稳定性和骑行寿命等方面。这些问题通常源于界面不稳定性,因此,能够准确控制材料表面和界面的精确表面化学对于先进的电池研究是非常需要的。分子自组装作为一种表面化学工具,由于其固有的优点,如自发组织、分子尺度均匀性和结构多样性,被认为超越了许多传统的涂层技术。最近的出版物已经证明了自组装单分子层 (SAM) 在解决电池领域的紧迫问题(例如锂的化学稳定性)方面的能力,但还需要更多的研究来充分探索这种技术对储能的潜力和影响。这种观点是第一个致力于电池和相关材料中的 SAM。综述了电池中SAMs的最新研究进展,主要分为两类,包括化学稳定性的提高和转换电极反应中成核的调节。讨论了 SAM 在储能中的未来应用和考虑。我们相信这些总结和展望具有高度刺激性,可能有利于电池化学的未来发展。综述了近年来电池中SAMs的研究进展,主要分为两类,包括化学稳定性的提高和转换电极反应中成核的调节。讨论了 SAM 在储能中的未来应用和考虑。我们相信这些总结和展望具有高度刺激性,可能有利于电池化学的未来发展。综述了近年来电池中SAMs的研究进展,主要分为两类,包括化学稳定性的提高和转换电极反应中成核的调节。讨论了 SAM 在储能中的未来应用和考虑。我们相信这些总结和展望具有高度刺激性,可能有利于电池化学的未来发展。