当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-08-06 , DOI: 10.1002/adfm.202104980 Cyril Poriel 1 , Cassandre Quinton 1 , Fabien Lucas 1 , Joëlle Rault‐Berthelot 1 , Zuo‐Quan Jiang 2 , Olivier Jeannin 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-08-06 , DOI: 10.1002/adfm.202104980 Cyril Poriel 1 , Cassandre Quinton 1 , Fabien Lucas 1 , Joëlle Rault‐Berthelot 1 , Zuo‐Quan Jiang 2 , Olivier Jeannin 1
Affiliation
Spirobifluorene (SBF) is one of the most important scaffolds used in the design of organic semi-conductors (OSCs) for electronics. In recent years, among all the structures developed for these applications, SBF dimers have been highlighted due to their great potential in thermally activated delayed fluorescence and in phosphorescent organic light-emitting diodes. Attaching two SBF units generate 10 dimers, each possessing its own structural specificity, which in turn drives its electronic properties. These ten SBF dimers are gathered herein. Understanding how the molecular assembly determines the electronic properties has been one of the pillars of organic electronics. This is the goal of this article. As positional isomerism is a key tool to design OSCs, defining the design guidelines for the SBF scaffold appears of interest for the future of this building block. Herein, the importance of the two main parameters involved in the electrochemical and photophysical properties, namely the nature of the phenyl linkages and the steric congestion between the two SBF units is discussed. The combination of these two parameters drives the electronic properties but their respective weight is different as a function of the regioisomer involved or of the property considered (frontier orbitals energy level, absorption, fluorescence, phosphorescence).
中文翻译:
螺二芴二聚体:了解分子组装如何驱动电子特性
螺二芴 (SBF) 是用于设计电子有机半导体 (OSC) 的最重要的支架之一。近年来,在为这些应用开发的所有结构中,SBF 二聚体因其在热激活延迟荧光和磷光有机发光二极管中的巨大潜力而备受关注。连接两个 SBF 单元会产生 10 个二聚体,每个都有自己的结构特异性,这反过来又驱动了它的电子特性。这十个 SBF 二聚体汇集于此。了解分子组装如何决定电子特性一直是有机电子学的支柱之一。这是本文的目标。由于位置异构是设计 OSC 的关键工具,定义 SBF 脚手架的设计指南似乎对这个构建块的未来感兴趣。在此,讨论了涉及电化学和光物理性质的两个主要参数的重要性,即苯基键的性质和两个 SBF 单元之间的空间拥塞。这两个参数的组合驱动了电子特性,但它们各自的权重根据所涉及的区域异构体或所考虑的特性(前沿轨道能级、吸收、荧光、磷光)而不同。
更新日期:2021-08-06
中文翻译:
螺二芴二聚体:了解分子组装如何驱动电子特性
螺二芴 (SBF) 是用于设计电子有机半导体 (OSC) 的最重要的支架之一。近年来,在为这些应用开发的所有结构中,SBF 二聚体因其在热激活延迟荧光和磷光有机发光二极管中的巨大潜力而备受关注。连接两个 SBF 单元会产生 10 个二聚体,每个都有自己的结构特异性,这反过来又驱动了它的电子特性。这十个 SBF 二聚体汇集于此。了解分子组装如何决定电子特性一直是有机电子学的支柱之一。这是本文的目标。由于位置异构是设计 OSC 的关键工具,定义 SBF 脚手架的设计指南似乎对这个构建块的未来感兴趣。在此,讨论了涉及电化学和光物理性质的两个主要参数的重要性,即苯基键的性质和两个 SBF 单元之间的空间拥塞。这两个参数的组合驱动了电子特性,但它们各自的权重根据所涉及的区域异构体或所考虑的特性(前沿轨道能级、吸收、荧光、磷光)而不同。