当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2021-08-05 , DOI: 10.1002/anie.202107944 Jonas C Ott 1 , Elizaveta A Suturina 2 , Ilya Kuprov 3 , Joscha Nehrkorn 4 , Alexander Schnegg 4 , Markus Enders 1 , Lutz H Gade 1
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2021-08-05 , DOI: 10.1002/anie.202107944 Jonas C Ott 1 , Elizaveta A Suturina 2 , Ilya Kuprov 3 , Joscha Nehrkorn 4 , Alexander Schnegg 4 , Markus Enders 1 , Lutz H Gade 1
Affiliation
We report an experimental observation of 31P NMR resonances shifted by over 10 000 ppm (meaning percent range, and a new record for solutions), and similar 1H chemical shifts, in an intermediate-spin square planar ferrous complex [tBu(PNP)Fe-H], where PNP is a carbazole-based pincer ligand. Using a combination of electronic structure theory, nuclear magnetic resonance, magnetometry, and terahertz electron paramagnetic resonance, the influence of magnetic anisotropy and zero-field splitting on the paramagnetic shift and relaxation enhancement is investigated. Detailed spin dynamics simulations indicate that, even with relatively slow electron spin relaxation (T1 ≈10−11 s), it remains possible to observe NMR signals of directly metal-bonded atoms because pronounced rhombicity in the electron zero-field splitting reduces nuclear paramagnetic relaxation enhancement.
中文翻译:
超过 10 000 ppm 化学位移的顺磁 NMR 信号的可观测性
我们报告了在中间自旋方形平面亚铁配合物 [ t Bu (PNP) 中31 P NMR 共振位移超过 10 000 ppm(意味着百分比范围,并且是溶液的新记录)以及类似的1 H 化学位移的实验观察结果)Fe-H],其中 PNP 是咔唑基钳配体。结合电子结构理论、核磁共振、磁力测量和太赫兹电子顺磁共振,研究了磁各向异性和零场分裂对顺磁位移和弛豫增强的影响。详细的自旋动力学模拟表明,即使电子自旋弛豫相对较慢( T 1 ≈10 -11 s),仍然可以观察到直接金属键合原子的核磁共振信号,因为电子零场分裂中明显的菱形减少了核顺磁性放松增强。
更新日期:2021-10-04
中文翻译:
超过 10 000 ppm 化学位移的顺磁 NMR 信号的可观测性
我们报告了在中间自旋方形平面亚铁配合物 [ t Bu (PNP) 中31 P NMR 共振位移超过 10 000 ppm(意味着百分比范围,并且是溶液的新记录)以及类似的1 H 化学位移的实验观察结果)Fe-H],其中 PNP 是咔唑基钳配体。结合电子结构理论、核磁共振、磁力测量和太赫兹电子顺磁共振,研究了磁各向异性和零场分裂对顺磁位移和弛豫增强的影响。详细的自旋动力学模拟表明,即使电子自旋弛豫相对较慢( T 1 ≈10 -11 s),仍然可以观察到直接金属键合原子的核磁共振信号,因为电子零场分裂中明显的菱形减少了核顺磁性放松增强。