当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Antisolvent Engineering to Optimize Grain Crystallinity and Hole-Blocking Capability of Perovskite Films for High-Performance Photovoltaics
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-02 , DOI: 10.1002/adma.202102816 Yulan Huang 1, 2 , Tanghao Liu 1 , Bingzhe Wang 1 , Jielei Li 1 , Dongyang Li 2 , Guoliang Wang 2 , Qing Lian 2 , Abbas Amini 3 , Shi Chen 1 , Chun Cheng 2, 4, 5 , Guichuan Xing 1
Advanced Materials ( IF 27.4 ) Pub Date : 2021-08-02 , DOI: 10.1002/adma.202102816 Yulan Huang 1, 2 , Tanghao Liu 1 , Bingzhe Wang 1 , Jielei Li 1 , Dongyang Li 2 , Guoliang Wang 2 , Qing Lian 2 , Abbas Amini 3 , Shi Chen 1 , Chun Cheng 2, 4, 5 , Guichuan Xing 1
Affiliation
With potential commercial applications, inverted perovskite solar cells (PSCs) have received wide-spread attentions as they are compatible with tandem devices and processed at low-temperature. Nevertheless, their efficiencies remain unsatisfactory due to insufficient film quality on hydrophobic hole transport layer and limited hole-blocking capability of the electron transport layer. Herein, 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), an n-type semiconductor, is incorporated into the antisolvent to simultaneously regulate the grain growth and charge transport of perovskite films. TPBi facilitates the crystallization of perovskites along (100) orientation. Besides, TPBi is mainly distributed near the top surface of perovskite film and enhances the hole-blocking capability of the area adjacent to the surface. The superior properties of this film lead to a remarkable improvement in the open-circuit voltage of inverted PSCs. The champion device achieves a high power conversion efficiency of 21.79% while keeping ≈92% of its initial value after 1000 h storage in the ambient atmosphere. This work provides an effective way to evidently promote the performance of inverted PSCs and illustrates its underlaying mechanism.
中文翻译:
抗溶剂工程优化用于高性能光伏的钙钛矿薄膜的晶粒结晶度和孔阻塞能力
由于具有潜在的商业应用,倒置钙钛矿太阳能电池(PSC)因其与串联器件兼容并在低温下加工而受到广泛关注。然而,由于疏水空穴传输层上的薄膜质量不足和电子传输层的空穴阻挡能力有限,它们的效率仍然不令人满意。在此,1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi),一种n型半导体,被加入到抗溶剂中,同时调节钙钛矿薄膜的晶粒生长和电荷传输. TPBi 促进钙钛矿沿 (100) 方向结晶。此外,TPBi主要分布在钙钛矿薄膜的顶面附近,增强了与表面相邻区域的空穴阻挡能力。该薄膜的优异性能显着提高了倒置 PSC 的开路电压。冠军器件实现了 21.79% 的高功率转换效率,同时在环境大气中储存 1000 小时后仍保持其初始值的 ≈92%。这项工作为明显提高倒置 PSC 的性能提供了一种有效的方法,并说明了其底层机制。
更新日期:2021-09-21
中文翻译:
抗溶剂工程优化用于高性能光伏的钙钛矿薄膜的晶粒结晶度和孔阻塞能力
由于具有潜在的商业应用,倒置钙钛矿太阳能电池(PSC)因其与串联器件兼容并在低温下加工而受到广泛关注。然而,由于疏水空穴传输层上的薄膜质量不足和电子传输层的空穴阻挡能力有限,它们的效率仍然不令人满意。在此,1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi),一种n型半导体,被加入到抗溶剂中,同时调节钙钛矿薄膜的晶粒生长和电荷传输. TPBi 促进钙钛矿沿 (100) 方向结晶。此外,TPBi主要分布在钙钛矿薄膜的顶面附近,增强了与表面相邻区域的空穴阻挡能力。该薄膜的优异性能显着提高了倒置 PSC 的开路电压。冠军器件实现了 21.79% 的高功率转换效率,同时在环境大气中储存 1000 小时后仍保持其初始值的 ≈92%。这项工作为明显提高倒置 PSC 的性能提供了一种有效的方法,并说明了其底层机制。