当前位置:
X-MOL 学术
›
Drug Des. Dev. Ther.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction
Drug Design, Development and Therapy ( IF 4.7 ) Pub Date : 2021-07-29 , DOI: 10.2147/dddt.s307113 Sahar S Alghamdi 1, 2 , Rasha S Suliman 1, 2 , Khlood Almutairi 1 , Khawla Kahtani 1 , Dimah Aljatli 1
Drug Design, Development and Therapy ( IF 4.7 ) Pub Date : 2021-07-29 , DOI: 10.2147/dddt.s307113 Sahar S Alghamdi 1, 2 , Rasha S Suliman 1, 2 , Khlood Almutairi 1 , Khawla Kahtani 1 , Dimah Aljatli 1
Affiliation
Abstract: Various imidazole-containing compounds have been tested for their medical usefulness in clinical trials for several disease conditions. The rapid expansion of imidazole-based medicinal chemistry suggests the promising and potential therapeutic values of imidazole-derived compounds for treating incurable diseases. Imidazole core scaffold contains three carbon atoms, and two nitrogen with electronic-rich characteristics that are responsible for readily binding with a variety of enzymes, proteins, and receptors compared to the other heterocyclic rings. Herein, we provide a thorough overview of the current research status of imidazole-based compounds with a wide variety of biological activities including anti-cancer, anti-microbial, anti-inflammatory and their potential mechanisms including topoisomerase IIR catalytic inhibition, focal adhesion kinase (FAK) inhibition, c-MYC G-quadruplex DNA stabilization, and aurora kinase inhibition. Additionally, a great interest was reported in the discovery of novel imidazole compounds with anti-microbial properties that break DNA double-strand helix and inhibit protein kinase. Moreover, anti-inflammatory mechanisms of imidazole derivatives include inhibition of COX-2 enzyme, inhibit neutrophils degranulation, and generation of reactive oxygen species. This systemic review helps to design and discover more potent and efficacious imidazole compounds based on the reported derivatives, their ADME profiles, and bioavailability scores that together aid to advance this class of compounds.
Keywords: imidazole, apoptosis, kinase inhibitors, tubulin polymerization, topoisomerase II
中文翻译:
咪唑作为一种有前途的药用支架:现状和未来方向
摘要:各种含咪唑的化合物已在多种疾病的临床试验中测试了它们的医学用途。咪唑类药物化学的快速发展表明咪唑类化合物在治疗不治之症方面具有广阔的前景和潜在的治疗价值。咪唑核心支架包含三个碳原子和两个具有丰富电子特性的氮原子,与其他杂环相比,它们易于与多种酶、蛋白质和受体结合。在此,我们全面概述了具有多种生物活性的咪唑类化合物的研究现状,包括抗癌、抗微生物、抗炎及其潜在机制,包括拓扑异构酶 IIR 催化抑制,粘着斑激酶 (FAK) 抑制、c-MYC G-四链体 DNA 稳定和极光激酶抑制。此外,人们对发现具有抗微生物特性的新型咪唑化合物产生了极大的兴趣,这些化合物可以破坏 DNA 双链螺旋并抑制蛋白激酶。此外,咪唑衍生物的抗炎机制包括抑制 COX-2 酶、抑制中性粒细胞脱粒和产生活性氧。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。据报道,人们对发现具有抗微生物特性的新型咪唑化合物产生了极大的兴趣,这些化合物可以破坏 DNA 双链螺旋并抑制蛋白激酶。此外,咪唑衍生物的抗炎机制包括抑制 COX-2 酶、抑制中性粒细胞脱粒和产生活性氧。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。据报道,人们对发现具有抗微生物特性的新型咪唑化合物产生了极大的兴趣,这些化合物可以破坏 DNA 双链螺旋并抑制蛋白激酶。此外,咪唑衍生物的抗炎机制包括抑制 COX-2 酶、抑制中性粒细胞脱粒和产生活性氧。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。和活性氧的产生。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。和活性氧的产生。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。
关键词:咪唑,细胞凋亡,激酶抑制剂,微管蛋白聚合,拓扑异构酶 II
更新日期:2021-07-29
Keywords: imidazole, apoptosis, kinase inhibitors, tubulin polymerization, topoisomerase II
中文翻译:
咪唑作为一种有前途的药用支架:现状和未来方向
摘要:各种含咪唑的化合物已在多种疾病的临床试验中测试了它们的医学用途。咪唑类药物化学的快速发展表明咪唑类化合物在治疗不治之症方面具有广阔的前景和潜在的治疗价值。咪唑核心支架包含三个碳原子和两个具有丰富电子特性的氮原子,与其他杂环相比,它们易于与多种酶、蛋白质和受体结合。在此,我们全面概述了具有多种生物活性的咪唑类化合物的研究现状,包括抗癌、抗微生物、抗炎及其潜在机制,包括拓扑异构酶 IIR 催化抑制,粘着斑激酶 (FAK) 抑制、c-MYC G-四链体 DNA 稳定和极光激酶抑制。此外,人们对发现具有抗微生物特性的新型咪唑化合物产生了极大的兴趣,这些化合物可以破坏 DNA 双链螺旋并抑制蛋白激酶。此外,咪唑衍生物的抗炎机制包括抑制 COX-2 酶、抑制中性粒细胞脱粒和产生活性氧。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。据报道,人们对发现具有抗微生物特性的新型咪唑化合物产生了极大的兴趣,这些化合物可以破坏 DNA 双链螺旋并抑制蛋白激酶。此外,咪唑衍生物的抗炎机制包括抑制 COX-2 酶、抑制中性粒细胞脱粒和产生活性氧。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。据报道,人们对发现具有抗微生物特性的新型咪唑化合物产生了极大的兴趣,这些化合物可以破坏 DNA 双链螺旋并抑制蛋白激酶。此外,咪唑衍生物的抗炎机制包括抑制 COX-2 酶、抑制中性粒细胞脱粒和产生活性氧。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。和活性氧的产生。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。和活性氧的产生。该系统综述有助于根据已报告的衍生物、它们的 ADME 谱和生物利用度评分设计和发现更有效的咪唑化合物,这些都有助于推进此类化合物的发展。
关键词:咪唑,细胞凋亡,激酶抑制剂,微管蛋白聚合,拓扑异构酶 II