当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Low-Temperature Co-hydroxylated Cu/SiO2 Hybrid Bonding Strategy for a Memory-Centric Chip Architecture
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-28 , DOI: 10.1021/acsami.1c09796 Qiushi Kang 1 , Chenxi Wang 1 , Shicheng Zhou 1 , Ge Li 1 , Tian Lu 1 , Yanhong Tian 1 , Peng He 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-28 , DOI: 10.1021/acsami.1c09796 Qiushi Kang 1 , Chenxi Wang 1 , Shicheng Zhou 1 , Ge Li 1 , Tian Lu 1 , Yanhong Tian 1 , Peng He 1
Affiliation
Cu/SiO2 hybrid bonding with planarized dielectric and isolated metal connections can realize ultradense interconnects (e.g., ≤1 μm) by eliminating the microbumps and underfill through the direct bonding of Cu–Cu and SiO2–SiO2. However, the low-temperature bonding of Cu–Cu (oxide-free surface) and SiO2–SiO2 (hydroxylated surface) is difficult to be compatible in a mechanism. We circumvent this contradiction by constructing a co-hydroxylated functional surface on a Cu/SiO2 hybrid platform. By combining and optimizing the protocol of Ar/O2 plasma activation and formic acid solution immersion, an −OH active layer was successfully established on the Cu and SiO2 surfaces simultaneously, and the increased total surface area provided more adsorption sites for hydroxyl groups. A Cu–Cu interface with sufficient atom diffusion, substantial grain growth, and fewer microvoids was obtained at 200 °C. Notably, the carbon-related interlayer that may degrade the interfacial performance could be effectively inhibited across the optimized SiO2–SiO2 interface even if organic acid was introduced in the protocol. This low-temperature Cu/SiO2 hybrid bonding via a co-hydroxylated strategy may inspire the development of a memory-centric chip architecture and functional integrated circuits delivering a monolithic-like performance in the future hyperscaling era.
中文翻译:
用于以存储器为中心的芯片架构的低温 Co-羟基化 Cu/SiO2 混合键合策略
Cu/SiO 2混合键合与平面化电介质和隔离金属连接可以通过 Cu-Cu 和 SiO 2 -SiO 2的直接键合消除微凸块和底部填充物来实现超密互连(例如,≤1 μm)。然而,Cu-Cu(无氧化物表面)和SiO 2 -SiO 2(羟基化表面)的低温键合在机制上难以兼容。我们通过在 Cu/SiO 2混合平台上构建共羟基化功能表面来规避这一矛盾。通过结合优化 Ar/O 2等离子体活化和甲酸溶液浸渍的方案,在 Cu 和 SiO 上成功建立了 -OH 活性层2个表面同时,增加的总表面积为羟基提供了更多的吸附位点。在 200 °C 下获得了具有足够原子扩散、大量晶粒生长和较少微孔的 Cu-Cu 界面。值得注意的是,即使在协议中引入了有机酸,也可以通过优化的 SiO 2 -SiO 2界面有效抑制可能降低界面性能的碳相关中间层。这种通过共羟基化策略实现的低温 Cu/SiO 2混合键合可能会激发以内存为中心的芯片架构和功能集成电路的开发,从而在未来的超大规模时代提供类似单片的性能。
更新日期:2021-08-19
中文翻译:
用于以存储器为中心的芯片架构的低温 Co-羟基化 Cu/SiO2 混合键合策略
Cu/SiO 2混合键合与平面化电介质和隔离金属连接可以通过 Cu-Cu 和 SiO 2 -SiO 2的直接键合消除微凸块和底部填充物来实现超密互连(例如,≤1 μm)。然而,Cu-Cu(无氧化物表面)和SiO 2 -SiO 2(羟基化表面)的低温键合在机制上难以兼容。我们通过在 Cu/SiO 2混合平台上构建共羟基化功能表面来规避这一矛盾。通过结合优化 Ar/O 2等离子体活化和甲酸溶液浸渍的方案,在 Cu 和 SiO 上成功建立了 -OH 活性层2个表面同时,增加的总表面积为羟基提供了更多的吸附位点。在 200 °C 下获得了具有足够原子扩散、大量晶粒生长和较少微孔的 Cu-Cu 界面。值得注意的是,即使在协议中引入了有机酸,也可以通过优化的 SiO 2 -SiO 2界面有效抑制可能降低界面性能的碳相关中间层。这种通过共羟基化策略实现的低温 Cu/SiO 2混合键合可能会激发以内存为中心的芯片架构和功能集成电路的开发,从而在未来的超大规模时代提供类似单片的性能。