Macromolecular Research ( IF 2.8 ) Pub Date : 2021-07-24 , DOI: 10.1007/s13233-021-9060-1 Lei Wang 1 , Shijing Yan 1, 2 , Lei Zhang 1 , Yuliang Mai 1 , Weihao Li 1 , Hao Pang 1
The degradation and recycling of waste epoxy resin products is an urgent environmental problem. To solve this issue, we use acid-/base-degradable 1,1′,1″-(1,3,5-hexahydro-s-triazine-1,3,5-triyl) tris(3-ethylamino-propan-1-one) (TAHT-EA) as curing agent to introduce the hexahydro-s-triazine (HT) ring structure into the cross-linking network to prepare degradable epoxy resin. Specifically, 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAHT) and ethylamine quickly complete the Aza-Michael addition reaction at the interface of chloroform and water droplets under the catalysis of water. The FTIR spectra, NMR spectrum and mass spectrum show that mono- and bis-addition products of ethylamine coexist in the product in which the content of the primary addition product reaches 97%. TAHT-EA can be decomposed by acid and base solutions. Through NMR analysis of the degradation products, it can be explained that the degradation mechanisms are different. The breaking of amide bonds and HT rings in acid solution and the cracking of amide bonds in base solution are speculated to be the main mechanisms under these two different circumstances, respectively. We tested the mechanical, thermal and degradation properties of the epoxy resin cured by TAHT-EA, and compared it with the epoxy resin cured by 4,4′-diaminodiphenylmethane and triethylenetetramine. TAHT-EA-cured epoxy resin shows comparable mechanical properties with Young’s modulus up to 2.05 GPa and tensile strength up to 70.9 MPa. What is more, it degrades completely by 1 M H+/OH− solution at 60 °C within 36 h. Nevertheless, it exhibited a relatively low crosslinked density (633 mol/m3) and low heat resistance (the initial decomposition temperature is lower than 205 °C). Overall, TAHT-EA cured epoxy resin has the potential to gradually replace traditional thermosetting resin, thereby solving the environmental problems caused by discarded epoxy resin products.
中文翻译:
1,3,5-三丙烯酰氨基-六氢-s-三嗪衍生物固化的酸碱降解环氧树脂
废弃环氧树脂产品的降解和回收利用是一个亟待解决的环境问题。为了解决这个问题,我们使用酸/碱可降解的 1,1',1"-(1,3,5-hexahydro-s-triazine-1,3,5-triyl) tris(3-ethylamino-propan- 1-one)(TAHT-EA)作为固化剂,将六氢-s-三嗪(HT)环结构引入交联网络,制备可降解环氧树脂。具体而言,1,3,5-三丙烯酰六氢-1,3,5-三嗪(TAHT)和乙胺在水的催化作用下,在氯仿和水滴界面快速完成Aza-Michael加成反应。FTIR谱、核磁共振谱和质谱表明乙胺的单加成和双加成产物共存于初级加成产物含量达到97%的产物中。TAHT-EA 能被酸和碱溶液分解。通过对降解产物的核磁共振分析,可以解释降解机制不同。据推测,酸溶液中酰胺键和HT环的断裂和碱溶液中酰胺键的断裂分别是这两种不同情况下的主要机制。我们测试了 TAHT-EA 固化环氧树脂的机械、热和降解性能,并将其与 4,4'-二氨基二苯基甲烷和三亚乙基四胺固化的环氧树脂进行了比较。TAHT-EA 固化环氧树脂显示出相当的机械性能,杨氏模量高达 2.05 GPa,拉伸强度高达 70.9 MPa。更重要的是,它完全降解 1 MH 据推测,酸溶液中酰胺键和HT环的断裂和碱溶液中酰胺键的断裂分别是这两种不同情况下的主要机制。我们测试了 TAHT-EA 固化环氧树脂的机械、热和降解性能,并将其与 4,4'-二氨基二苯基甲烷和三亚乙基四胺固化的环氧树脂进行了比较。TAHT-EA 固化环氧树脂显示出相当的机械性能,杨氏模量高达 2.05 GPa,拉伸强度高达 70.9 MPa。更重要的是,它完全降解 1 MH 据推测,酸溶液中酰胺键和HT环的断裂和碱溶液中酰胺键的断裂分别是这两种不同情况下的主要机制。我们测试了 TAHT-EA 固化环氧树脂的机械、热和降解性能,并将其与 4,4'-二氨基二苯基甲烷和三亚乙基四胺固化的环氧树脂进行了比较。TAHT-EA 固化环氧树脂显示出相当的机械性能,杨氏模量高达 2.05 GPa,拉伸强度高达 70.9 MPa。更重要的是,它完全降解 1 MH 并将其与4,4'-二氨基二苯基甲烷和三亚乙基四胺固化的环氧树脂进行比较。TAHT-EA 固化环氧树脂显示出相当的机械性能,杨氏模量高达 2.05 GPa,拉伸强度高达 70.9 MPa。更重要的是,它完全降解 1 MH 并将其与4,4'-二氨基二苯基甲烷和三亚乙基四胺固化的环氧树脂进行比较。TAHT-EA 固化环氧树脂显示出相当的机械性能,杨氏模量高达 2.05 GPa,拉伸强度高达 70.9 MPa。更重要的是,它完全降解 1 MH+ /OH -溶液在 60 °C 下 36 小时内。然而,它表现出相对较低的交联密度(633 mol/m 3)和较低的耐热性(初始分解温度低于 205 °C)。总体而言,TAHT-EA固化环氧树脂具有逐步取代传统热固性树脂的潜力,从而解决因环氧树脂产品废弃而造成的环境问题。