当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Excellent Deformable Oxide Glass Electrolytes and Oxide-Type All-Solid-State Li2S–Si Batteries Employing These Electrolytes
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-21 , DOI: 10.1021/acsami.1c09120
Hiroshi Nagata 1 , Junji Akimoto 1
Affiliation  

Oxide-type all-solid-state lithium-ion batteries have attracted great attention as a candidate for a next-generation battery with high safety performance. However, batteries based on oxide systems exhibit much lower energy densities and rate performances than liquid-type lithium-ion batteries, owing to the difficulty in preparing the ion- and electron-transfer path between particles. In this study, Li2SO4–Li2CO3–LiX (X = Cl, Br, and I) glass systems are investigated as highly deformable and high-ionic-conductive oxide electrolytes. These electrolytes show excellent deformable properties and better ionic conductivity. The LiI oxide glass system is a suitable electrolyte for the negative electrode because it shows a higher ionic conductivity and is stable up to 2.8 V. The LiCl or LiBr oxide glass systems are suitable electrolytes for the positive electrode and separation layer because they show high ionic conductivity and kinetic stability up to 3.2 V. The Li2S positive and Si negative composite electrodes employing LiBr and LiI oxide glass electrolytes, respectively, show high battery performances because of increased reaction points between active materials and the solid electrolyte and carbon via a mechanical milling process and are capable of forming good interparticle contact. Therefore, it suggests that the excellent deformable electrolytes are suitable for solid electrolytes in composite electrodes because their ionic conductivity does not change by the mechanical milling process. Furthermore, an oxide-type all-solid-state Li2S–Si full-battery cell employing these positive and negative composite electrodes and a LiBr oxide glass electrolyte separation layer is demonstrated. The full-battery cell indicates a relatively high discharge capacity of 740 mA h g–1(Li2S) and an area capacity of 2.8 mA h cm–2 at 0.064 mA cm–2 and 45 °C despite using only safe oxide electrolytes.

中文翻译:

优异的可变形氧化物玻璃电解质和采用这些电解质的氧化物型全固态 Li2S-Si 电池

氧化物型全固态锂离子电池作为具有高安全性能的下一代电池的候选者备受关注。然而,基于氧化物系统的电池比液体型锂离子电池表现出低得多的能量密度和倍率性能,因为难以制备粒子之间的离子和电子传递路径。在本研究中,Li 2 SO 4 –Li 2 CO 3–LiX(X = Cl、Br 和 I)玻璃系统被研究为高度可变形和高离子导电性氧化物电解质。这些电解质显示出优异的可变形性能和更好的离子电导率。LiI 氧化物玻璃系统是负极的合适电解质,因为它显示出更高的离子电导率,并且在高达 2.8 V 时保持稳定。 LiCl 或 LiBr 氧化物玻璃系统是正极和隔离层的合适电解质,因为它们显示出高离子电导率电导率和动力学稳定性高达 3.2 V。 Li 2分别采用 LiBr 和 LiI 氧化物玻璃电解质的 S 正极和 Si 负极复合电极显示出高电池性能,因为通过机械研磨过程增加了活性材料与固体电解质和碳之间的反应点,并且能够形成良好的颗粒间接触。因此,这表明优异的可变形电解质适用于复合电极中的固体电解质,因为它们的离子电导率不会因机械研磨过程而改变。此外,还展示了采用这些正极和负极复合电极和 LiBr 氧化物玻璃电解质分离层的氧化物型全固态 Li 2 S-Si 全电池电池。全电池电池显示出相对较高的放电容量 740 mA hg尽管仅使用安全的氧化物电解质,但在 0.064 mA cm –2和 45 °C 下,–1 (Li 2 S) 和 2.8 mA h cm –2的面积容量。
更新日期:2021-08-04
down
wechat
bug