Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microstructure-Controlled Polyacrylonitrile/Graphene Fibers over 1 Gigapascal Strength
ACS Nano ( IF 15.8 ) Pub Date : 2021-07-22 , DOI: 10.1021/acsnano.1c02155 Wonsik Eom 1, 2 , Sang Hoon Lee 1 , Hwansoo Shin 1, 3 , Woojae Jeong 1, 3 , Ki Hwan Koh 1 , Tae Hee Han 1, 2, 3
ACS Nano ( IF 15.8 ) Pub Date : 2021-07-22 , DOI: 10.1021/acsnano.1c02155 Wonsik Eom 1, 2 , Sang Hoon Lee 1 , Hwansoo Shin 1, 3 , Woojae Jeong 1, 3 , Ki Hwan Koh 1 , Tae Hee Han 1, 2, 3
Affiliation
Controlling the microstructures in fibers, such as crystalline structures and microvoids, is a crucial challenge for the development of mechanically strong graphene fibers (GFs). To date, although GFs graphitized at high temperatures have exhibited high tensile strength, GFs still have limited the ultimate mechanical strength owing to the presence due to the structural defects, including the imperfect alignment of graphitic crystallites and the presence of microsized voids. In this study, we significantly enhanced the mechanical strength of GF by controlling microstructures of fibers. GF was hybridized by incorporating polyacrylonitrile (PAN) in the graphene oxide (GO) dope solution. In addition, we controlled the orientation of the inner structure by applying a tensile force at 800 °C. The results suggest that PAN can act as a binder for graphene sheets and can facilitate the rearrangement of the fiber’s microstructure. PAN was directionally carbonized between graphene sheets due to the catalytic effect of graphene. The resulting hybrid GFs successfully displayed a high strength of 1.10 GPa without undergoing graphitization at extremely high temperatures. We believe that controlling the alignment of nanoassembled structure is an efficient strategy for achieving the inherent performance characteristics of graphene at the level of multidimensional structures including films and fibers.
中文翻译:
微结构控制的聚丙烯腈/石墨烯纤维超过 1 吉帕的强度
控制纤维中的微结构,如晶体结构和微孔洞,是开发机械强度高的石墨烯纤维 (GFs) 的关键挑战。迄今为止,尽管在高温下石墨化的 GFs 具有较高的拉伸强度,但由于结构缺陷的存在,包括石墨微晶的不完美排列和微孔的存在,GFs 仍然限制了最终的机械强度。在这项研究中,我们通过控制纤维的微观结构显着提高了 GF 的机械强度。GF 通过在氧化石墨烯 (GO) 掺杂溶液中加入聚丙烯腈 (PAN) 进行杂化。此外,我们通过在 800°C 下施加张力来控制内部结构的取向。结果表明,PAN 可以作为石墨烯片的粘合剂,并可以促进纤维微观结构的重新排列。由于石墨烯的催化作用,PAN在石墨烯片之间定向碳化。由此产生的混合 GF 成功地显示出 1.10 GPa 的高强度,而无需在极高温度下进行石墨化。我们认为,控制纳米组装结构的排列是在包括薄膜和纤维在内的多维结构水平上实现石墨烯固有性能特征的有效策略。10 GPa 在极高温度下不发生石墨化。我们认为,控制纳米组装结构的排列是在包括薄膜和纤维在内的多维结构水平上实现石墨烯固有性能特征的有效策略。10 GPa 在极高温度下不发生石墨化。我们认为,控制纳米组装结构的排列是在包括薄膜和纤维在内的多维结构水平上实现石墨烯固有性能特征的有效策略。
更新日期:2021-08-24
中文翻译:
微结构控制的聚丙烯腈/石墨烯纤维超过 1 吉帕的强度
控制纤维中的微结构,如晶体结构和微孔洞,是开发机械强度高的石墨烯纤维 (GFs) 的关键挑战。迄今为止,尽管在高温下石墨化的 GFs 具有较高的拉伸强度,但由于结构缺陷的存在,包括石墨微晶的不完美排列和微孔的存在,GFs 仍然限制了最终的机械强度。在这项研究中,我们通过控制纤维的微观结构显着提高了 GF 的机械强度。GF 通过在氧化石墨烯 (GO) 掺杂溶液中加入聚丙烯腈 (PAN) 进行杂化。此外,我们通过在 800°C 下施加张力来控制内部结构的取向。结果表明,PAN 可以作为石墨烯片的粘合剂,并可以促进纤维微观结构的重新排列。由于石墨烯的催化作用,PAN在石墨烯片之间定向碳化。由此产生的混合 GF 成功地显示出 1.10 GPa 的高强度,而无需在极高温度下进行石墨化。我们认为,控制纳米组装结构的排列是在包括薄膜和纤维在内的多维结构水平上实现石墨烯固有性能特征的有效策略。10 GPa 在极高温度下不发生石墨化。我们认为,控制纳米组装结构的排列是在包括薄膜和纤维在内的多维结构水平上实现石墨烯固有性能特征的有效策略。10 GPa 在极高温度下不发生石墨化。我们认为,控制纳米组装结构的排列是在包括薄膜和纤维在内的多维结构水平上实现石墨烯固有性能特征的有效策略。