当前位置: X-MOL 学术J. Polym. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The chemical effect of furfuryl amide on the enhanced performance of the diphenolic acid derived bio-polybenzoxazine resin
Journal of Polymer Science ( IF 3.9 ) Pub Date : 2021-07-21 , DOI: 10.1002/pol.20210399
Zizhao Qian 1 , Qing Li 1 , Lujie Wang 1 , Feiya Fu 1 , Xiangdong Liu 1
Affiliation  

As a renewable chemical, diphenolic acid (DPA) has attracted immense interest in bio-based polymer science. However, its application for polybenzoxazines is limited due to decarboxylation, that is, the release of CO2 during the curing reaction of benzoxazine. In this study, the amidation strategy of converting DPA to diphenolic amides (DPAM) was demonstrated to solve this problem while simultaneously improving the thermal properties of polybenzoxazine. DPA was amidated by separately using four amines (hexamine, cyclohexylamine, furfurylamine, and aniline), then reacted with furfurylamine and paraformaldehyde to synthesize their benzoxazine monomers. By using TGA and DMA, all amide-containing polybenzoxazines were found to exhibit excellent thermal stabilities. Among all of the benzoxazine resins, poly(DFA-fa), which was obtained from amidation with furfurylamine, exhibited the highest glass transition temperature (Tg) of 310°C and a decomposition temperature (Td10) of 406°C. Furthermore, a possible post-curing reaction mechanism was proposed to explain the outstanding thermal performance of poly(DFA-fa) resin. This study proposes an innovative strategy to solve the decarboxylation of DPA-based polymers, which is of significance for high-performance bio-based polymers.

中文翻译:

糠酰胺对二酚酸衍生生物聚苯并恶嗪树脂性能增强的化学作用

作为一种可再生化学品,二酚酸 (DPA) 引起了生物基聚合物科学的极大兴趣。然而,由于脱羧,即释放CO 2,其在聚苯并恶嗪中的应用受到限制在苯并恶嗪的固化反应过程中。在这项研究中,证明了将 DPA 转化为双酚酰胺 (DPAM) 的酰胺化策略可以解决这个问题,同时提高聚苯并恶嗪的热性能。DPA分别使用四种胺(六胺、环己胺、糠胺和苯胺)进行酰胺化,然后与糠胺和多聚甲醛反应合成苯并恶嗪单体。通过使用 TGA 和 DMA,发现所有含酰胺的聚苯并恶嗪都表现出优异的热稳定性。在所有的苯并恶嗪树脂,聚(DFA-FA),其从与糠酰胺化而获得的,显示出最高的玻璃化转变温度(Ť的310℃,分解温度()Ť D10) 406°C。此外,还提出了一种可能的后固化反应机制来解释聚(DFA-fa)树脂的出色热性能。本研究提出了一种解决DPA基聚合物脱羧的创新策略,这对高性能生物基聚合物具有重要意义。
更新日期:2021-09-15
down
wechat
bug