当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nonchemical n- and p-Type Charge Transfer Doping of FAPbI3 Perovskite
ACS Energy Letters ( IF 19.3 ) Pub Date : 2021-07-21 , DOI: 10.1021/acsenergylett.1c01233 Chunqing Ma 1 , Bosung Kim 2 , Dong-Ho Kang 1 , Sang-Woo Kim 2 , Nam-Gyu Park 1
ACS Energy Letters ( IF 19.3 ) Pub Date : 2021-07-21 , DOI: 10.1021/acsenergylett.1c01233 Chunqing Ma 1 , Bosung Kim 2 , Dong-Ho Kang 1 , Sang-Woo Kim 2 , Nam-Gyu Park 1
Affiliation
Controlling the Fermi level of semiconductors underlies most electronic and photovoltaic technologies. However, it remains limited to continuously tune the doping levels of the intensively studied lead halide perovskite by introducing any impurities or functional molecules. Here, we report a nonchemical charge transfer doping approach for continuous tuning of the work function (WF) of perovskite. A modification of surface WF from 4.18 to 5.05 eV is achieved by applying a bias voltage and varying its polarity on the formamidinium lead triiodide (FAPbI3) perovskite films via the top Au electrode acting as a medium. Here, n- and p-type charge transfer doping are realized by the negative and positive applied voltages, respectively. The negative applied voltage enhances both carrier mobility and density, leading to an improved conductivity of FAPbI3. The n-type FAPbI3 formed by the applied voltage of −2 V is applied to a dynamic perovskite/spiro-MeOTAD triboelectric device, which results in 1.5 and 3 times increases in DC voltage and current, respectively, as compared to the pristine perovskite without charge transfer doping. This tunable WF by the nonchemical charge transfer doping gives insights into innovational exploitation of the halide perovskite and also provides a new strategy for optoelectronics.
中文翻译:
FAPbI3钙钛矿的非化学n型和p型电荷转移掺杂
控制半导体的费米能级是大多数电子和光伏技术的基础。然而,通过引入任何杂质或功能分子来连续调整卤化铅钙钛矿的掺杂水平仍然受到限制。在这里,我们报告了一种用于连续调整钙钛矿功函数 (WF) 的非化学电荷转移掺杂方法。通过在甲脒三碘化铅 (FAPbI 3 ) 钙钛矿薄膜上施加偏置电压并通过充当介质的顶部 Au 电极改变其极性,将表面 WF 从 4.18 eV 修改为 5.05 eV 。这里,n - 和p型电荷转移掺杂分别通过施加负电压和正电压来实现。施加的负电压提高了载流子迁移率和密度,从而提高了 FAPbI 3 的导电性。由 -2 V 施加电压形成的n型 FAPbI 3应用于动态钙钛矿/螺-MeOTAD 摩擦电器件,与原始钙钛矿相比,直流电压和电流分别增加了 1.5 倍和 3 倍没有电荷转移掺杂。这种通过非化学电荷转移掺杂的可调 WF 为卤化物钙钛矿的创新开发提供了见解,也为光电子学提供了新的策略。
更新日期:2021-08-13
中文翻译:
FAPbI3钙钛矿的非化学n型和p型电荷转移掺杂
控制半导体的费米能级是大多数电子和光伏技术的基础。然而,通过引入任何杂质或功能分子来连续调整卤化铅钙钛矿的掺杂水平仍然受到限制。在这里,我们报告了一种用于连续调整钙钛矿功函数 (WF) 的非化学电荷转移掺杂方法。通过在甲脒三碘化铅 (FAPbI 3 ) 钙钛矿薄膜上施加偏置电压并通过充当介质的顶部 Au 电极改变其极性,将表面 WF 从 4.18 eV 修改为 5.05 eV 。这里,n - 和p型电荷转移掺杂分别通过施加负电压和正电压来实现。施加的负电压提高了载流子迁移率和密度,从而提高了 FAPbI 3 的导电性。由 -2 V 施加电压形成的n型 FAPbI 3应用于动态钙钛矿/螺-MeOTAD 摩擦电器件,与原始钙钛矿相比,直流电压和电流分别增加了 1.5 倍和 3 倍没有电荷转移掺杂。这种通过非化学电荷转移掺杂的可调 WF 为卤化物钙钛矿的创新开发提供了见解,也为光电子学提供了新的策略。