当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Acceleration of DNA Hybridization Chain Reactions on 3D Nanointerfaces of Magnetic Particles and Their Direct Application in the Enzyme-Free Amplified Detection of microRNA
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-21 , DOI: 10.1021/acsami.1c09631 Motoi Oishi 1 , Shotaro Juji 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-21 , DOI: 10.1021/acsami.1c09631 Motoi Oishi 1 , Shotaro Juji 1
Affiliation
Accelerated DNA hybridization chain reactions (HCRs) using DNA origami as a scaffold have received considerable attention in dynamic DNA nanotechnology. However, tailor-made designs are essential for DNA origami scaffolds, hampering the practical application of accelerated HCRs. Here, we constructed the semilocalized HCR and localized HCR systems using magnetic beads (MBs) as a simple scaffold to explore them for the enzyme-free miR-21 detection. The semilocalized HCR system relied on free diffusing one hairpin DNA and MBs immobilized with another hairpin DNA, and the localized HCR system relied on MBs coimmobilized with two hairpin DNAs. We demonstrated that the DNA density on MBs plays a critical role in HCR kinetics and limit of detection (LOD). Among semilocalized HCR systems, MBs with a medium DNA density showed a faster HCR and lower LOD (10 pM) than the diffusive (conventional) HCR system (LOD: 86 pM). In contrast, the HCR further accelerated for the localized HCR systems as the DNA density increased. The localized HCR system with the highest DNA density showed the fastest HCR and the lowest LOD (533 fM). These findings are of great importance for the rational design of accelerated HCRs using simple scaffolds for practical applications.
中文翻译:
磁性粒子 3D 纳米界面上 DNA 杂交链反应的加速及其在 microRNA 无酶扩增检测中的直接应用
使用 DNA 折纸作为支架的加速 DNA 杂交链反应 (HCR) 在动态 DNA 纳米技术中受到了相当大的关注。然而,量身定制的设计对于 DNA 折纸支架来说是必不可少的,这阻碍了加速 HCR 的实际应用。在这里,我们使用磁珠 (MB) 作为简单的支架构建了半定位 HCR 和定位 HCR 系统,以探索它们用于无酶 miR-21 检测。半定域 HCR 系统依赖于自由扩散的一个发夹 DNA 和固定有另一个发夹 DNA 的 MB,而定域 HCR 系统依赖于与两个发夹 DNA 共固定的 MB。我们证明 MB 上的 DNA 密度在 HCR 动力学和检测限 (LOD) 中起着关键作用。在半局部化 HCR 系统中,与扩散(常规)HCR 系统(LOD:86 pM)相比,具有中等 DNA 密度的 MB 显示出更快的 HCR 和更低的 LOD (10 pM)。相比之下,随着 DNA 密度的增加,局部 HCR 系统的 HCR 进一步加速。具有最高 DNA 密度的局部 HCR 系统显示出最快的 HCR 和最低的 LOD (533 fM)。这些发现对于在实际应用中使用简单支架合理设计加速 HCR 具有重要意义。
更新日期:2021-08-04
中文翻译:
磁性粒子 3D 纳米界面上 DNA 杂交链反应的加速及其在 microRNA 无酶扩增检测中的直接应用
使用 DNA 折纸作为支架的加速 DNA 杂交链反应 (HCR) 在动态 DNA 纳米技术中受到了相当大的关注。然而,量身定制的设计对于 DNA 折纸支架来说是必不可少的,这阻碍了加速 HCR 的实际应用。在这里,我们使用磁珠 (MB) 作为简单的支架构建了半定位 HCR 和定位 HCR 系统,以探索它们用于无酶 miR-21 检测。半定域 HCR 系统依赖于自由扩散的一个发夹 DNA 和固定有另一个发夹 DNA 的 MB,而定域 HCR 系统依赖于与两个发夹 DNA 共固定的 MB。我们证明 MB 上的 DNA 密度在 HCR 动力学和检测限 (LOD) 中起着关键作用。在半局部化 HCR 系统中,与扩散(常规)HCR 系统(LOD:86 pM)相比,具有中等 DNA 密度的 MB 显示出更快的 HCR 和更低的 LOD (10 pM)。相比之下,随着 DNA 密度的增加,局部 HCR 系统的 HCR 进一步加速。具有最高 DNA 密度的局部 HCR 系统显示出最快的 HCR 和最低的 LOD (533 fM)。这些发现对于在实际应用中使用简单支架合理设计加速 HCR 具有重要意义。