当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly Reliable Charge Trap-Type Organic Non-Volatile Memory Device Using Advanced Band-Engineered Organic-Inorganic Hybrid Dielectric Stacks
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-07-17 , DOI: 10.1002/adfm.202103291 Min Ju Kim 1 , Changhyeon Lee 2 , Eui Joong Shin 1 , Tae In Lee 1 , Seongho Kim 1 , Jaejoong Jeong 1 , Junhwan Choi 2 , Wan Sik Hwang 3 , Sung Gap Im 2 , Byung Jin Cho 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-07-17 , DOI: 10.1002/adfm.202103291 Min Ju Kim 1 , Changhyeon Lee 2 , Eui Joong Shin 1 , Tae In Lee 1 , Seongho Kim 1 , Jaejoong Jeong 1 , Junhwan Choi 2 , Wan Sik Hwang 3 , Sung Gap Im 2 , Byung Jin Cho 1
Affiliation
With the recent interest in data storage in flexible electronics, highly reliable charge trap-type organic-based non-volatile memory (CT-ONVM) has attracted much attention. CT-ONVM should have a wide memory window, good endurance, and long-term retention characteristics, as well as mechanical flexibility. This paper proposed CT-ONVM devices consisting of band-engineered organic–inorganic hybrid films synthesized via an initiated chemical vapor deposition process. The synthesized poly(1,3,5-trimethyl-1,3,5,-trivinyl cyclotrisiloxane) and Al hybrid films are used as a tunneling dielectric layer and a blocking dielectric layer, respectively. For the charge trapping layer, different Hf, Zr, and Ti hybrids are examined, and their memory performances are systematically compared. The best combination of hybrid dielectric stacks showed a wide memory window of 6.77 V, good endurance of up to 104 cycles, and charge retention of up to 71% after 108 s even under the 2% strained condition. The CT-ONVM device using the hybrid dielectric stacks outperforms other organic-based charge trap memory devices and is even comparable in performance to conventional inorganic-based poly-silicon/oxide/nitride/oxide/silicon structures devices. The CT-ONVM using hybrid dielectrics can overcome the inherent low reliability and process complexity limitations of organic electronics and expedite the realization of wearable organic electronics.
中文翻译:
使用先进的能带工程有机-无机混合电介质堆栈的高度可靠的电荷陷阱型有机非易失性存储器件
随着最近对柔性电子产品中数据存储的兴趣,高度可靠的电荷陷阱型有机非易失性存储器(CT-ONVM)引起了很多关注。CT-ONVM 应该具有宽的内存窗口、良好的耐久性和长期保留特性,以及机械灵活性。本文提出了 CT-ONVM 设备,该设备由通过起始化学气相沉积过程合成的带工程有机-无机杂化薄膜组成。合成的聚(1,3,5-三甲基-1,3,5,-三乙烯基环三硅氧烷)和铝杂化薄膜分别用作隧道介电层和阻挡介电层。对于电荷俘获层,研究了不同的 Hf、Zr 和 Ti 杂化物,并系统地比较了它们的存储性能。4次循环,即使在 2% 的应变条件下,10 8秒后电荷保持率也高达 71% 。使用混合电介质堆叠的 CT-ONVM 器件优于其他基于有机物的电荷陷阱存储器件,甚至在性能上与传统的基于无机物的多晶硅/氧化物/氮化物/氧化物/硅结构器件相当。使用混合电介质的 CT-ONVM 可以克服有机电子产品固有的低可靠性和工艺复杂性限制,加速可穿戴有机电子产品的实现。
更新日期:2021-07-17
中文翻译:
使用先进的能带工程有机-无机混合电介质堆栈的高度可靠的电荷陷阱型有机非易失性存储器件
随着最近对柔性电子产品中数据存储的兴趣,高度可靠的电荷陷阱型有机非易失性存储器(CT-ONVM)引起了很多关注。CT-ONVM 应该具有宽的内存窗口、良好的耐久性和长期保留特性,以及机械灵活性。本文提出了 CT-ONVM 设备,该设备由通过起始化学气相沉积过程合成的带工程有机-无机杂化薄膜组成。合成的聚(1,3,5-三甲基-1,3,5,-三乙烯基环三硅氧烷)和铝杂化薄膜分别用作隧道介电层和阻挡介电层。对于电荷俘获层,研究了不同的 Hf、Zr 和 Ti 杂化物,并系统地比较了它们的存储性能。4次循环,即使在 2% 的应变条件下,10 8秒后电荷保持率也高达 71% 。使用混合电介质堆叠的 CT-ONVM 器件优于其他基于有机物的电荷陷阱存储器件,甚至在性能上与传统的基于无机物的多晶硅/氧化物/氮化物/氧化物/硅结构器件相当。使用混合电介质的 CT-ONVM 可以克服有机电子产品固有的低可靠性和工艺复杂性限制,加速可穿戴有机电子产品的实现。