当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-16 , DOI: 10.1021/acsami.1c08176 Rajiv Giridharagopal 1 , Jiajie Guo 2 , Jessica Kong 1 , David S Ginger 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-07-16 , DOI: 10.1021/acsami.1c08176 Rajiv Giridharagopal 1 , Jiajie Guo 2 , Jessica Kong 1 , David S Ginger 1
Affiliation
Organic electrochemical transistors are believed to face an inherent material design tension between optimizing for ion mobility and for electronic mobility. These devices transduce ion uptake into electrical current, thereby requiring high ion mobility for efficient electrochemical doping and rapid turn-on kinetics and high electronic mobility for the maximum transconductance. Here, we explore a facile route to improve operational kinetics and volumetric capacitance in a high-mobility conjugated polymer (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)], DPP-DTT) by employing a nanowire morphology. For equivalent thicknesses, the DPP-DTT nanowire films exhibit consistently faster kinetics (∼6–10× faster) compared to a neat DPP-DTT film. The nanowire architectures show ∼4× higher volumetric capacitance, increasing from 7.1 to 27.7 F/cm3, consistent with the porous structure better enabling ion uptake throughout the film. The nanowires also exhibit a small but energetically favorable shift in a threshold voltage of ∼17 mV, making the nanostructured system both faster and energetically easier to electrochemically dope compared to neat films. We explain the variation using two atomic force microscopy methods: in situ electrochemical strain microscopy and nanoinfrared imaging via photoinduced force microscopy. These data show that the nanowire film’s structure allows greater swelling and ion uptake throughout the active layer, indicating that the nanowire architecture exhibits volumetric operation, whereas the neat film is largely operating via the field effect. We propose that for higher-mobility materials, casting the active layer in a nanowire form may offer faster kinetics, enhanced volumetric capacitance, and possibly lower threshold voltage while maintaining desirable device performance.
中文翻译:
纳米线结构改善共轭聚合物电化学晶体管中的离子吸收动力学
有机电化学晶体管被认为在优化离子迁移率和电子迁移率之间面临固有的材料设计张力。这些器件将离子吸收转换为电流,因此需要高离子迁移率以实现有效的电化学掺杂和快速开启动力学以及高电子迁移率以实现最大跨导。在这里,我们探索了容易路线,以提高在高移动性共轭聚合物操作动力学和体积电容(聚[2,5-(2-辛基十二烷基)-3,6- diketopyrrolopyrrole- ALT -5,5-(2,5- -di(thien-2-yl)thieno [3,2- b]噻吩)],DPP-DTT)通过采用纳米线形态。对于相同的厚度,与纯 DPP-DTT 薄膜相比,DPP-DTT 纳米线薄膜始终表现出更快的动力学(约 6-10 倍快)。纳米线结构显示出约 4 倍的体积电容,从 7.1 增加到 27.7 F/cm 3,与多孔结构一致,能够更好地使整个薄膜吸收离子。纳米线还在~17 mV 的阈值电压中表现出小的但在能量上有利的偏移,与纯薄膜相比,使纳米结构系统在电化学掺杂方面更快且更容易进行。我们使用两种原子力显微镜方法来解释这种变化:原位通过光致力显微镜进行电化学应变显微镜和纳米红外成像。这些数据表明,纳米线薄膜的结构允许在整个有源层中有更大的溶胀和离子吸收,表明纳米线结构表现出体积操作,而纯薄膜主要通过场效应进行操作。我们建议对于更高迁移率的材料,以纳米线形式铸造活性层可以提供更快的动力学、增强的体积电容和可能更低的阈值电压,同时保持理想的器件性能。
更新日期:2021-07-28
中文翻译:
纳米线结构改善共轭聚合物电化学晶体管中的离子吸收动力学
有机电化学晶体管被认为在优化离子迁移率和电子迁移率之间面临固有的材料设计张力。这些器件将离子吸收转换为电流,因此需要高离子迁移率以实现有效的电化学掺杂和快速开启动力学以及高电子迁移率以实现最大跨导。在这里,我们探索了容易路线,以提高在高移动性共轭聚合物操作动力学和体积电容(聚[2,5-(2-辛基十二烷基)-3,6- diketopyrrolopyrrole- ALT -5,5-(2,5- -di(thien-2-yl)thieno [3,2- b]噻吩)],DPP-DTT)通过采用纳米线形态。对于相同的厚度,与纯 DPP-DTT 薄膜相比,DPP-DTT 纳米线薄膜始终表现出更快的动力学(约 6-10 倍快)。纳米线结构显示出约 4 倍的体积电容,从 7.1 增加到 27.7 F/cm 3,与多孔结构一致,能够更好地使整个薄膜吸收离子。纳米线还在~17 mV 的阈值电压中表现出小的但在能量上有利的偏移,与纯薄膜相比,使纳米结构系统在电化学掺杂方面更快且更容易进行。我们使用两种原子力显微镜方法来解释这种变化:原位通过光致力显微镜进行电化学应变显微镜和纳米红外成像。这些数据表明,纳米线薄膜的结构允许在整个有源层中有更大的溶胀和离子吸收,表明纳米线结构表现出体积操作,而纯薄膜主要通过场效应进行操作。我们建议对于更高迁移率的材料,以纳米线形式铸造活性层可以提供更快的动力学、增强的体积电容和可能更低的阈值电压,同时保持理想的器件性能。