Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions
ACS Nano ( IF 15.8 ) Pub Date : 2021-07-16 , DOI: 10.1021/acsnano.1c04259 Jie Xiang Yang, Bai-Hao Dai, Ching-Yu Chiang, I-Chia Chiu, Chih-Wen Pao, Sheng-Yuan Lu, I-Yu Tsao, Shou-Tai Lin, Ching-Ting Chiu, Jien-Wei Yeh, Pai-Chun Chang, Wei-Hsuan Hung
ACS Nano ( IF 15.8 ) Pub Date : 2021-07-16 , DOI: 10.1021/acsnano.1c04259 Jie Xiang Yang, Bai-Hao Dai, Ching-Yu Chiang, I-Chia Chiu, Chih-Wen Pao, Sheng-Yuan Lu, I-Yu Tsao, Shou-Tai Lin, Ching-Ting Chiu, Jien-Wei Yeh, Pai-Chun Chang, Wei-Hsuan Hung
Although high-entropy alloys have been intensively studied in the past decade, there are still many requirements for manufacturing processes and application directions to be proposed and developed, but most techniques are focused on high-entropy bulk materials and surface coatings. We fabricated high-entropy ceramic (HEC) nanomaterials using simple pulsed laser irradiation scanning on mixed salt solutions (PLMS method) under low-vacuum conditions. This method, allowing simple operation, rapid manufacturing, and low cost, is capable of using various metal salts as precursors and is also suitable for both flat and complicated 3D substrates. In this work, we engineered this PLMS method to fabricate high-entropy ceramic oxides containing four to seven elements. To address the catalytic performance of these HEC nanomaterials, we focused on CoCrFeNiAl high-entropy oxides applied to the oxygen-evolution reaction (OER), which is considered a sluggish process in water. We performed systematic material characterization to solve the complicated structure of the CoCrFeNiAl HEC as a spinel structure, AB2O4 (A, B = Co, Cr, Fe, Ni, or Al). Atoms in A and B sites in the spinel structure can be replaced with other elements; either divalent or trivalent metals can occupy the spinel lattice using this PLMS process. We applied this PLMS method to manufacture electrocatalytic CoCrFeNiAl HEC electrodes for the OER reaction, which displayed state-of-the-art activity and stability.
中文翻译:
用于催化反应的高熵陶瓷纳米材料的快速制备
尽管近十年来高熵合金得到了深入研究,但对制造工艺和应用方向仍有许多要求有待提出和发展,但大多数技术都集中在高熵体材料和表面涂层上。我们在低真空条件下使用简单的脉冲激光照射扫描混合盐溶液(PLMS 方法)制造了高熵陶瓷 (HEC) 纳米材料。该方法操作简单、制造快速、成本低,能够使用各种金属盐作为前驱体,也适用于平面和复杂的3D基板。在这项工作中,我们设计了这种 PLMS 方法来制造包含四到七种元素的高熵陶瓷氧化物。为了解决这些 HEC 纳米材料的催化性能,我们专注于应用于析氧反应 (OER) 的 CoCrFeNiAl 高熵氧化物,该反应被认为是在水中缓慢的过程。我们进行了系统的材料表征,以解决 CoCrFeNiAl HEC 作为尖晶石结构的复杂结构,AB2 O 4 (A、B = Co、Cr、Fe、Ni 或 Al)。尖晶石结构中A位和B位的原子可以用其他元素代替;使用这种 PLMS 工艺,二价或三价金属都可以占据尖晶石晶格。我们应用这种 PLMS 方法来制造用于 OER 反应的电催化 CoCrFeNiAl HEC 电极,该电极显示出最先进的活性和稳定性。
更新日期:2021-07-27
中文翻译:
用于催化反应的高熵陶瓷纳米材料的快速制备
尽管近十年来高熵合金得到了深入研究,但对制造工艺和应用方向仍有许多要求有待提出和发展,但大多数技术都集中在高熵体材料和表面涂层上。我们在低真空条件下使用简单的脉冲激光照射扫描混合盐溶液(PLMS 方法)制造了高熵陶瓷 (HEC) 纳米材料。该方法操作简单、制造快速、成本低,能够使用各种金属盐作为前驱体,也适用于平面和复杂的3D基板。在这项工作中,我们设计了这种 PLMS 方法来制造包含四到七种元素的高熵陶瓷氧化物。为了解决这些 HEC 纳米材料的催化性能,我们专注于应用于析氧反应 (OER) 的 CoCrFeNiAl 高熵氧化物,该反应被认为是在水中缓慢的过程。我们进行了系统的材料表征,以解决 CoCrFeNiAl HEC 作为尖晶石结构的复杂结构,AB2 O 4 (A、B = Co、Cr、Fe、Ni 或 Al)。尖晶石结构中A位和B位的原子可以用其他元素代替;使用这种 PLMS 工艺,二价或三价金属都可以占据尖晶石晶格。我们应用这种 PLMS 方法来制造用于 OER 反应的电催化 CoCrFeNiAl HEC 电极,该电极显示出最先进的活性和稳定性。