当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cations Coordination-Regulated Reversibility Enhancement for Aqueous Zn-Ion Battery
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-07-14 , DOI: 10.1002/adfm.202105736 Long Qian 1 , Wentao Yao 1 , Rui Yao 1 , Yiming Sui 1 , Haojie Zhu 1 , Fangcheng Wang 1 , Jianwei Zhao 2 , Chunyi Zhi 3 , Cheng Yang 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-07-14 , DOI: 10.1002/adfm.202105736 Long Qian 1 , Wentao Yao 1 , Rui Yao 1 , Yiming Sui 1 , Haojie Zhu 1 , Fangcheng Wang 1 , Jianwei Zhao 2 , Chunyi Zhi 3 , Cheng Yang 1
Affiliation
Aqueous Zn-ion batteries are emerging as a promising candidate for large-scale energy storage, while the short lifetime and poor reversibility of Zn anodes limit their further development. When attempting to enhance reversibility, most reported methods involve toxic and pollutive substances and decreased water content, which inevitably sacrificed safety level, rate performance, and environmentally benign characteristics. Herein, a series of low-cost and “green” molecules are introduced into the aqueous (ZnCl2, ZnSO4) electrolytes, featured with cations coordination capability, which can significantly inhibit the hydration step of Zn2+ and delay the formation of the key by-products (Zn5(OH)8Cl2·H2O, 3Zn(OH)3·ZnSO4·5H2O) in aqueous electrolytes via regulating the coordination status of Zn2+. In the optimized electrolyte system, a highly reversible Zn metal anode presents excellent electrochemical performance, featured with a long lifespan over 1185 h at 1 mA cm−2 and smooth deposition morphology. Furthermore, Zn–MnO2 batteries based on the electrolyte deliver high capacity retention of 82.9% after 200 cycles. These breakthroughs suggest that this method offers a versatile toolbox toward developing future advanced multivalent metal batteries for large-scale energy storage.
中文翻译:
水系锌离子电池的阳离子配位调节可逆性增强
水系锌离子电池正成为大规模储能的有希望的候选者,而锌负极的短寿命和不良可逆性限制了它们的进一步发展。在试图提高可逆性时,大多数报道的方法涉及有毒和污染物质并降低水含量,这不可避免地牺牲了安全水平、倍率性能和环境友好特性。在此,一系列低成本、“绿色”的分子被引入水性(ZnCl 2、ZnSO 4)电解质中,具有阳离子配位能力,可以显着抑制Zn 2+的水化步骤,延缓锌离子的形成。关键副产品 (Zn 5 (OH) 8 Cl 2·H 2 O, 3Zn(OH) 3 ·ZnSO 4 ·5H 2 O) 在水性电解质中通过调节Zn 2+的配位状态。在优化的电解质体系中,高度可逆的锌金属负极表现出优异的电化学性能,在 1 mA cm -2 下具有超过 1185 小时的长寿命和平滑的沉积形态。此外,基于电解质的Zn-MnO 2电池在 200 次循环后可提供 82.9% 的高容量保持率。这些突破表明,这种方法为开发未来用于大规模储能的先进多价金属电池提供了一个通用的工具箱。
更新日期:2021-07-14
中文翻译:
水系锌离子电池的阳离子配位调节可逆性增强
水系锌离子电池正成为大规模储能的有希望的候选者,而锌负极的短寿命和不良可逆性限制了它们的进一步发展。在试图提高可逆性时,大多数报道的方法涉及有毒和污染物质并降低水含量,这不可避免地牺牲了安全水平、倍率性能和环境友好特性。在此,一系列低成本、“绿色”的分子被引入水性(ZnCl 2、ZnSO 4)电解质中,具有阳离子配位能力,可以显着抑制Zn 2+的水化步骤,延缓锌离子的形成。关键副产品 (Zn 5 (OH) 8 Cl 2·H 2 O, 3Zn(OH) 3 ·ZnSO 4 ·5H 2 O) 在水性电解质中通过调节Zn 2+的配位状态。在优化的电解质体系中,高度可逆的锌金属负极表现出优异的电化学性能,在 1 mA cm -2 下具有超过 1185 小时的长寿命和平滑的沉积形态。此外,基于电解质的Zn-MnO 2电池在 200 次循环后可提供 82.9% 的高容量保持率。这些突破表明,这种方法为开发未来用于大规模储能的先进多价金属电池提供了一个通用的工具箱。