超长隧道作为交通系统的一种选择正在迅速发展。然而,由于其结构复杂,有害污染物很容易积聚,导致对机械通风系统的依赖增加。交通风也可以用来补充通风。然而,目前的隧道通风指南并不能准确反映交通风。此外,风洞测试和数值方法非常耗时,并且通常不包含不同的交通条件。本研究将隧道内的交通状况量化为五个交通状况参数:车道分布、车辆距离、堵塞率、车速和大型车辆比例。使用计算流体动力学 (CFD) 方法,研究了五个参数对隧道内车辆空气阻力系数的影响。结果表明,车道分布、阻塞率、车辆距离、大型车辆比例对车辆空气阻力系数有显着影响;但是,车速的影响很小。在此基础上,结合实际交通条件下的阻塞率、车辆距离和大型车辆的比例,提出了隧道车辆空气阻力系数的通用计算方法。该方法具有可接受的精度(相对误差小于10%),便于隧道通风的设计和运行。结果表明,车道分布、阻塞率、车辆距离、大型车辆比例对车辆空气阻力系数有显着影响;但是,车速的影响很小。在此基础上,结合实际交通条件下的阻塞率、车辆距离和大型车辆的比例,提出了隧道车辆空气阻力系数的通用计算方法。该方法具有可接受的精度(相对误差小于10%),便于隧道通风的设计和运行。结果表明,车道分布、阻塞率、车辆距离、大型车辆比例对车辆空气阻力系数有显着影响;但是,车速的影响很小。在此基础上,结合实际交通条件下的阻塞率、车辆距离和大型车辆的比例,提出了隧道车辆空气阻力系数的通用计算方法。该方法具有可接受的精度(相对误差小于10%),便于隧道通风的设计和运行。在此基础上,结合实际交通条件下的阻塞率、车辆距离和大型车辆的比例,提出了隧道车辆空气阻力系数的通用计算方法。该方法具有可接受的精度(相对误差小于10%),便于隧道通风的设计和运行。在此基础上,结合实际交通条件下的阻塞率、车辆距离和大型车辆的比例,提出了隧道车辆空气阻力系数的通用计算方法。该方法具有可接受的精度(相对误差小于10%),便于隧道通风的设计和运行。
"点击查看英文标题和摘要"
Calculation method for air resistance coefficient of vehicles in tunnel with different traffic conditions
Extra-long tunnels are developing rapidly as an option for transportation systems. However, owing to their complex configurations, harmful pollutants can easily accumulate, leading to increased reliance on mechanical ventilation systems. Traffic wind can also be used to supplement ventilation. Nevertheless, current tunnel ventilation guidelines cannot accurately reflect the traffic wind. Moreover, wind tunnel tests and numerical methods are time consuming, and do not generally incorporate different traffic conditions. In this study, traffic conditions in a tunnel are quantified into five traffic condition parameters: distribution of lanes, vehicle distance, blockage ratio, vehicle speed, and proportion of large-scale vehicles. Using a computational fluid dynamics (CFD) method, the influences of the five parameters on the air resistance coefficients of vehicles in the tunnel are investigated. The results show that the distribution of lanes, blockage ratio, vehicle distance, and proportion of large-scale vehicles have significant influences on the air resistance coefficients of the vehicles; however, the impact of the vehicle speed is small. Based on the results, a general calculation method for the air resistance coefficient of vehicles in a tunnel is developed, considering the blockage ratio, vehicle distance, and proportion of large-scale vehicles in actual traffic conditions. The method shows acceptable accuracy (with relative errors of less than 10%), and is convenient for use in the design and operation of tunnel ventilation.