当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defects induced by solid state reactions at the tungsten-silicon carbide interface
Journal of Applied Physics ( IF 2.7 ) Pub Date : 2018-04-28 , DOI: 10.1063/1.5011242
S. M. Tunhuma 1 , M. Diale 1 , M. J. Legodi 1 , J. M. Nel 1 , T. T. Thabete 1 , F. D. Auret 1
Affiliation  

Defects introduced by the solid state reactions between tungsten and silicon carbide have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS. W/4H-SiC Schottky barrier diodes were isochronally annealed in the 100–1100 °C temperature range. Phase composition transitions and the associated evolution in the surface morphology were investigated using x-ray diffraction (XRD) and scanning electron microscopy (SEM). After annealing at 1100 °C, the E0.08, E0.15, E0.23, E0.34, E0.35, E0.61, E0.67, and E0.82 defects were observed. Our study reveals that products of thermal reactions at the interface between tungsten and n-4H-SiC may migrate into the semiconductor, resulting in electrically active defect states in the bandgap.Defects introduced by the solid state reactions between tungsten and silicon carbide have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS. W/4H-SiC Schottky barrier diodes were isochronally annealed in the 100–1100 °C temperature range. Phase composition transitions and the associated evolution in the surface morphology were investigated using x-ray diffraction (XRD) and scanning electron microscopy (SEM). After annealing at 1100 °C, the E0.08, E0.15, E0.23, E0.34, E0.35, E0.61, E0.67, and E0.82 defects were observed. Our study reveals that products of thermal reactions at the interface between tungsten and n-4H-SiC may migrate into the semiconductor, resulting in electrically active defect states in the bandgap.

中文翻译:

钨-碳化硅界面处固态反应引起的缺陷

已经使用深能级瞬态光谱 (DLTS) 和拉普拉斯 DLTS 研究了由钨和碳化硅之间的固态反应引入的缺陷。W/4H-SiC 肖特基势垒二极管在 100-1100 °C 温度范围内等时退火。使用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 研究了相组成转变和表面形态的相关演变。在 1100 °C 退火后,观察到 E0.08、E0.15、E0.23、E0.34、E0.35、E0.61、E0.67 和 E0.82 缺陷。我们的研究表明,钨和 n-4H-SiC 之间界面处的热反应产物可能会迁移到半导体中,导致带隙中的电活性缺陷态。已经使用深能级瞬态光谱 (DLTS) 和拉普拉斯 DLTS 研究了由钨和碳化硅之间的固态反应引入的缺陷。W/4H-SiC 肖特基势垒二极管在 100-1100 °C 温度范围内等时退火。使用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 研究了相组成转变和表面形态的相关演变。在 1100 °C 下退火后,观察到 E0.08、E0.15、E0.23、E0.34、E0.35、E0.61、E0.67 和 E0.82 缺陷。我们的研究表明,钨和 n-4H-SiC 之间界面处的热反应产物可能会迁移到半导体中,导致带隙中的电活性缺陷态。W/4H-SiC 肖特基势垒二极管在 100-1100 °C 温度范围内等时退火。使用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 研究了相组成转变和表面形态的相关演变。在 1100 °C 下退火后,观察到 E0.08、E0.15、E0.23、E0.34、E0.35、E0.61、E0.67 和 E0.82 缺陷。我们的研究表明,钨和 n-4H-SiC 之间界面处的热反应产物可能会迁移到半导体中,导致带隙中的电活性缺陷态。W/4H-SiC 肖特基势垒二极管在 100-1100 °C 温度范围内等时退火。使用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 研究了相组成转变和表面形态的相关演变。在 1100 °C 下退火后,观察到 E0.08、E0.15、E0.23、E0.34、E0.35、E0.61、E0.67 和 E0.82 缺陷。我们的研究表明,钨和 n-4H-SiC 之间界面处的热反应产物可能会迁移到半导体中,导致带隙中的电活性缺陷态。观察到 E0.34、E0.35、E0.61、E0.67 和 E0.82 缺陷。我们的研究表明,钨和 n-4H-SiC 之间界面处的热反应产物可能会迁移到半导体中,导致带隙中的电活性缺陷态。观察到 E0.34、E0.35、E0.61、E0.67 和 E0.82 缺陷。我们的研究表明,钨和 n-4H-SiC 之间界面处的热反应产物可能会迁移到半导体中,导致带隙中的电活性缺陷态。
更新日期:2018-04-28
down
wechat
bug