当前位置:
X-MOL 学术
›
Pattern Recogn.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graph edit distance: restrictions to be a metric
Pattern Recognition ( IF 7.5 ) Pub Date : 2019-06-01 , DOI: 10.1016/j.patcog.2019.01.043 Francesc Serratosa
Pattern Recognition ( IF 7.5 ) Pub Date : 2019-06-01 , DOI: 10.1016/j.patcog.2019.01.043 Francesc Serratosa
Abstract In the presentation of the graph edit distance in 1983 and other newer bibliography, authors state that it is necessary to apply the distance restrictions (non-negativity, identity of indiscernible elements, symmetry and triangle inequality) to each of the edit functions (insertion, deletion and substitution of nodes and edges) involved in the process of computing the graph edit distance to make the graph edit distance a true distance. Moreover, graph edit distance algorithms presented in the last three decades have been based on mapping the edit path that transforms a graph into the other one into a bijection of the graphs in which some null nodes have been added. In this paper, we show that the triangle inequality does not need to be imposed in each edit function if the graph edit distance is defined through an edit path; however, it is necessary if it is defined as a graph bijection. This is an important finding since the triangle inequality is the only restriction that relates different edit functions and concerns the process of tuning the edit functions given a specific application. Hence, on one hand, it would encourage research to define new algorithms based on the edit path instead of the graph bijection and, on the other hand, use edit functions without the restriction, for instance, that the sum of the costs of insertion and deletion of a pair of nodes has to be larger or equal than the cost of substituting them, which could increase the recognition ratio of a concrete application.
中文翻译:
图形编辑距离:限制为度量
摘要 在 1983 年的图形编辑距离和其他较新的参考书目的介绍中,作者指出有必要将距离限制(非负性、不可分辨元素的同一性、对称性和三角不等式)应用于每个编辑函数(插入,删除和替换节点和边)在计算图形编辑距离的过程中涉及到使图形编辑距离成为真实距离。此外,过去三年中提出的图形编辑距离算法基于将一个图形转换为另一个图形的编辑路径映射到其中添加了一些空节点的图形的双射。在本文中,我们表明如果通过编辑路径定义图形编辑距离,则不需要在每个编辑函数中强加三角不等式;然而,如果将其定义为图双射,则是必要的。这是一个重要的发现,因为三角不等式是与不同编辑功能相关的唯一限制,并且涉及在给定特定应用程序的情况下调整编辑功能的过程。因此,一方面,它会鼓励研究基于编辑路径而不是图形双射来定义新算法,另一方面,使用不受限制的编辑函数,例如,插入成本和删除一对节点必须大于或等于替换它们的成本,这可以提高具体应用的识别率。这是一个重要的发现,因为三角不等式是与不同编辑功能相关的唯一限制,并且涉及给定特定应用调整编辑功能的过程。因此,一方面,它会鼓励研究基于编辑路径而不是图形双射定义新算法,另一方面,使用不受限制的编辑函数,例如,插入成本和删除一对节点必须大于或等于替换它们的成本,这可以提高具体应用的识别率。这是一个重要的发现,因为三角不等式是与不同编辑功能相关的唯一限制,并且涉及给定特定应用调整编辑功能的过程。因此,一方面,它会鼓励研究基于编辑路径而不是图形双射来定义新算法,另一方面,使用不受限制的编辑函数,例如,插入成本和删除一对节点必须大于或等于替换它们的成本,这可以提高具体应用的识别率。
更新日期:2019-06-01
中文翻译:
图形编辑距离:限制为度量
摘要 在 1983 年的图形编辑距离和其他较新的参考书目的介绍中,作者指出有必要将距离限制(非负性、不可分辨元素的同一性、对称性和三角不等式)应用于每个编辑函数(插入,删除和替换节点和边)在计算图形编辑距离的过程中涉及到使图形编辑距离成为真实距离。此外,过去三年中提出的图形编辑距离算法基于将一个图形转换为另一个图形的编辑路径映射到其中添加了一些空节点的图形的双射。在本文中,我们表明如果通过编辑路径定义图形编辑距离,则不需要在每个编辑函数中强加三角不等式;然而,如果将其定义为图双射,则是必要的。这是一个重要的发现,因为三角不等式是与不同编辑功能相关的唯一限制,并且涉及在给定特定应用程序的情况下调整编辑功能的过程。因此,一方面,它会鼓励研究基于编辑路径而不是图形双射来定义新算法,另一方面,使用不受限制的编辑函数,例如,插入成本和删除一对节点必须大于或等于替换它们的成本,这可以提高具体应用的识别率。这是一个重要的发现,因为三角不等式是与不同编辑功能相关的唯一限制,并且涉及给定特定应用调整编辑功能的过程。因此,一方面,它会鼓励研究基于编辑路径而不是图形双射定义新算法,另一方面,使用不受限制的编辑函数,例如,插入成本和删除一对节点必须大于或等于替换它们的成本,这可以提高具体应用的识别率。这是一个重要的发现,因为三角不等式是与不同编辑功能相关的唯一限制,并且涉及给定特定应用调整编辑功能的过程。因此,一方面,它会鼓励研究基于编辑路径而不是图形双射来定义新算法,另一方面,使用不受限制的编辑函数,例如,插入成本和删除一对节点必须大于或等于替换它们的成本,这可以提高具体应用的识别率。