当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A hepatic sinusoids-based microtube reactor for (Z)-5-(4-hydroxybenzylidene)thiazolidine-2,4-dione intermediate drug synthesis
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2021-07-10 , DOI: 10.1016/j.ces.2021.116940
Mahmoud A. Shouman 1, 2 , Ahmed H. El-Shazly 3, 4 , Marwa F. Elkady 3, 5 , Mohamed Nabil Sabry 1 , Ramma Kamogawa 6 , Koki Nonaka 6 , Mitsuru Sasaki 7 , Akimaro Kawahara 8
Affiliation  

Microreactor technology is considered a breakthrough technology that can replace regular reactors systems as microreactors deliver proper mixing and reaction performance which satisfy both industry and research demands. This drives researchers to develop several microreactor systems with improved characteristics for plenty of applications, including medicine and pharmaceutical applications. In the present study, a microtube reactor system is constructed to produce (Z)-5-(4-hydroxybenzylidene)thiazolidine-2,4-dione intermediate drug with a hepatic sinusoids-based micromixer used as the part responsible of mixing the reactants in early stages. (Z)-5-(4-hydroxybenzylidene)thiazolidine-2,4-dione is an intermediate drug that belongs to glitazones. A batch reactor system is also constructed for the purpose of comparison. Thiazolidine-2,4-dione (TZD) and p-hydroxybenzaldehyde are used as the main reactants while two compounds are used as catalysts; diethylamine and piperdine. Effects of different parameters such as initial reactants concentration, catalyst concentration, and flow rate and residence time on the product yield and the pressure drop across the micromixer are investigated. Analysis of the collected samples is done using different characterization methods such as High Pressure Liquid Chromatography, Thermogravimetric/Differential Thermal Analysis, X-ray diffraction spectroscopy, Fourier Transform Infrared spectroscopy, and carbon and proton Nuclear magnetic resonance spectra. The microtube reactor system has proven to be more efficient than the batch system. The maximum yield obtained from the microtube reactor system is 97% with a residence time of only 22 min using diethylamine as a catalyst compared with 92% obtained from the batch system using piperdine as a catalyst after 12 hr run. The yield obtained from the microtube reactor system spans from 77% to 97% using diethylamine as a catalyst and from 56% to 84% using piperdine as a catalyst while the pressure drop across the micromixer ranges from 0.9 to 12 kPa.



中文翻译:

用于 (Z)-5-(4-羟基亚苄基)噻唑烷-2,4-二酮中间体药物合成的基于肝血窦的微管反应器

微反应器技术被认为是一项突破性技术,可以取代常规反应器系统,因为微反应器提供适当的混合和反应性能,满足工业和研究需求。这促使研究人员开发多种具有改进特性的微反应器系统,适用于包括医学和制药应用在内的大量应用。在本研究中,构建了一个微管反应器系统来生产 (Z)-5-(4-羟基亚苄基) 噻唑烷-2,4-二酮中间体药物,并使用基于肝血窦的微混合器作为负责混合反应物的部分早期阶段。(Z)-5-(4-hydroxybenzylidene)thiazolidine-2,4-dione 是属于格列酮类的中间体药物。为了比较,还构建了间歇式反应器系统。噻唑烷-2,4-二酮(TZD)和对羟基苯甲醛为主要反应物,两种化合物为催化剂;二乙胺和哌啶。研究了不同参数(如初始反应物浓度、催化剂浓度、流速和停留时间)对产物产率和微混合器压降的影响。使用不同的表征方法对收集到的样品进行分析,例如高压液相色谱、热重/差热分析、X 射线衍射光谱、傅里叶变换红外光谱以及碳和质子核磁共振光谱。微管反应器系统已被证明比分批系统更有效。从微管反应器系统获得的最大产率为 97%,使用二乙胺作为催化剂的停留时间仅为 22 分钟,而在 12 小时运行后,从使用哌啶作为催化剂的间歇系统获得的产率为 92%。使用二乙胺作为催化剂,从微管反应器系统获得的产率为 77% 至 97%,使用哌啶作为催化剂的产率为 56% 至 84%,而微混合器的压降范围为 0.9 至 12 kPa。

更新日期:2021-07-15
down
wechat
bug