当前位置: X-MOL 学术Semicond. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The RFET—a reconfigurable nanowire transistor and its application to novel electronic circuits and systems
Semiconductor Science and Technology ( IF 1.9 ) Pub Date : 2017-03-01 , DOI: 10.1088/1361-6641/aa5581
T Mikolajick 1, 2, 3 , A Heinzig 2, 3 , J Trommer 1, 3 , T Baldauf 2, 3 , W M Weber 1, 3
Affiliation  

With CMOS scaling reaching the limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last 5 years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end of roadmap extension of current technology with only small modifications to the process flow [1]. This paper gives a review on the RFET basics and current status. In the first sections the state of the art of reconfigurable devices will be summarized [2] and the RFET will be introduced together with related devices based on silicon nanowire technology [3]. The device optimization with respect to device symmetry and performance will be discussed next [4,5]. The potential of the RFET device technology will then be shown by discussiing circuit implementations making use of the unique advantages of this device concept [6,7,8]. The basic device concept was also extended towards applications in flexible devices and sensors [9,10] extending the capabilities also towards so called More than Moore applications were new functionalities are implemented in CMOS base processes. Finally the prospects of the RFET device technology will be discussed.

中文翻译:

RFET——一种可重构纳米线晶体管及其在新型电子电路和系统中的应用

随着 CMOS 缩放在未来十年达到极限,需要新的方法来增强电子系统的功能。设备级的可重构性有望以更少的设备数量实现更复杂的系统。在过去的 5 年中,已经提出了许多有趣的概念来实现这种设备级重新配置。其中,可重构场效应晶体管 (RFET) 是一种可以通过施加电信号在 n 沟道和 p 沟道行为之间配置的器件,可被视为当前技术路线图扩展的终点,只需对流程[1]。本文回顾了 RFET 的基础知识和现状。在第一部分中,将总结可重构器件的最新技术 [2],并将介绍 RFET 以及基于硅纳米线技术的相关器件 [3]。接下来将讨论关于器件对称性和性能的器件优化 [4,5]。然后将通过讨论利用该器件概念的独特优势的电路实现来展示 RFET 器件技术的潜力 [6,7,8]。基本设备概念也扩展到柔性设备和传感器中的应用 [9,10] 扩展功能也扩展到所谓的超越摩尔应用,新功能在 CMOS 基础工艺中实现。最后讨论RFET器件技术的前景。接下来将讨论关于器件对称性和性能的器件优化 [4,5]。然后将通过讨论利用该器件概念的独特优势的电路实现来展示 RFET 器件技术的潜力 [6,7,8]。基本设备概念也扩展到柔性设备和传感器中的应用 [9,10] 扩展功能也扩展到所谓的超越摩尔应用,新功能在 CMOS 基础工艺中实现。最后讨论RFET器件技术的前景。接下来将讨论关于器件对称性和性能的器件优化 [4,5]。然后将通过讨论利用该器件概念的独特优势的电路实现来展示 RFET 器件技术的潜力 [6,7,8]。基本设备概念也扩展到柔性设备和传感器中的应用 [9,10] 扩展功能也扩展到所谓的超越摩尔应用,新功能在 CMOS 基础工艺中实现。最后讨论RFET器件技术的前景。基本设备概念也扩展到柔性设备和传感器中的应用 [9,10] 扩展功能也扩展到所谓的超越摩尔应用,新功能在 CMOS 基础工艺中实现。最后讨论RFET器件技术的前景。基本设备概念也扩展到柔性设备和传感器中的应用 [9,10] 扩展功能也扩展到所谓的超越摩尔应用,新功能在 CMOS 基础工艺中实现。最后讨论RFET器件技术的前景。
更新日期:2017-03-01
down
wechat
bug