Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2021-07-09 , DOI: 10.1016/j.apcatb.2021.120519 Bowen Deng 1, 2 , Hui Song 1 , Kang Peng 1, 3 , Qian Li 1, 4 , Jinhua Ye 1, 2, 5
Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction.
中文翻译:
金属有机骨架衍生的Ga-Cu/CeO 2催化剂用于高效光热催化CO 2还原
光热催化CO 2还原是有效地将太阳能转化为化学能并减少全球碳排放的一个有吸引力的过程,但由于阳光捕获能力有限且缺乏高效催化剂,实现高转化效率仍然是一个巨大的挑战。在此,我们报告了一种通过直接热解含 Ga 和 Cu 的 Ce-金属-有机骨架合成的 Ga-Cu/CeO 2催化剂,用于有效的光热催化 CO 2加氢。由于在 CeO 2 中高度分散的 Ga 和 Cu 物种,优化的催化剂 10Cu5Ga/CeO 2(10 wt% Cu 和 5 wt% Ga)实现了 111.2 mmol g -1 h -1的 CO 产率在全太阳光谱照射下具有近 100% 的选择性,优于大多数报道的 Cu 和其他地球丰富的金属基光热催化剂。机理研究表明,光热加热/转换和光促进的协同作用有助于大幅增加 CO 产量。原位 DRIFTS 结果表明,Ga 的引入促进了甲酸盐物质的形成,甲酸盐物质是 CO 2加氢的关键中间体,光照射促进了甲酸盐物质分解为羰基,从而提高了 CO 的产生。这项工作为合成用于光热 CO 2还原的高效催化剂提供了一种潜在的策略。