当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
“Manipulation” of Crystal Structure by Methylthiolation Enabling Ultrahigh Mobility in a Pyrene-Based Molecular Semiconductor
Advanced Materials ( IF 27.4 ) Pub Date : 2021-07-05 , DOI: 10.1002/adma.202102914
Kazuo Takimiya 1, 2, 3 , Kirill Bulgarevich 1 , Mamatimin Abbas 4 , Shingo Horiuchi 1, 2 , Takuya Ogaki 1 , Kohsuke Kawabata 1, 2 , Abduleziz Ablat 4
Affiliation  

Control and prediction of crystal structures of molecular semiconductors are considered challenging, yet they are crucial for rational design of superior molecular semiconductors. It is here reported that through methylthiolation, one can rationally control the crystal structure of pyrene derivatives as molecular semiconductors; 1,6-bis(methylthio)pyrene keeps a similar sandwich herringbone structure to that of parent pyrene, whereas 1,3,6,8-tetrakis(methylthio)pyrene (MT-pyrene) takes a new type of brickwork structure. Such changes in these crystal structures are explained by the alteration of intermolecular interactions that are efficiently controlled by methylthiolation. Single crystals of MT-pyrene are evaluated as the active semiconducting material in single-crystal field-effect transistors (SC-FETs), which show extremely high mobility (32 cm2 V−1 s−1 on average) operating at the drain and gate voltages of 5 V. Moreover, the band-like transport and very low trap density are experimentally confirmed for the MT-pyrene SC-FETs, testifying that the MT-pyrene is among the best molecular semiconductors for the SC-FET devices.

中文翻译:


通过甲基硫醇化“操纵”晶体结构,在芘基分子半导体中实现超高迁移率



分子半导体晶体结构的控制和预测被认为是具有挑战性的,但它们对于优质分子半导体的合理设计至关重要。本文报道,通过甲基硫醇化,可以合理控制作为分子半导体的芘衍生物的晶体结构;1,6-双(甲硫基)芘保持与母体芘相似的夹层人字结构,而 1,3,6,8-四(甲硫基)芘 (MT-芘) 采用新型砌砖结构。这些晶体结构的这种变化可以通过甲基硫醇化有效控制的分子间相互作用的改变来解释。MT-芘的单晶被评估为单晶场效应晶体管 (SC-FET) 中的有源半导体材料,该晶体管在 5 V 的漏极和栅极电压下工作,显示出极高的迁移率(平均 32 cm2 V-1 s-1)。此外,实验证实了 MT-芘 SC-FET 的带状传输和非常低的陷阱密度,证明 MT-芘是 SC-FET 器件的最佳分子半导体之一。
更新日期:2021-08-12
down
wechat
bug