当前位置:
X-MOL 学术
›
Electron. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hybrid low-k spacer scheme for advanced FinFET technology parasitic capacitance reduction
Electronics Letters ( IF 0.7 ) Pub Date : 2020-05-01 , DOI: 10.1049/el.2019.3954 M. Gu 1 , X. Wang 1 , W. Li 1 , M. Aquilino 1 , J. Peng 1 , H. Wang 1 , D. Jaeger 1 , K. Tabakman 1 , R. Carter 1 , O. Hu 1 , W. Ma 1 , M. Joshi 1 , L. Lee 1
Electronics Letters ( IF 0.7 ) Pub Date : 2020-05-01 , DOI: 10.1049/el.2019.3954 M. Gu 1 , X. Wang 1 , W. Li 1 , M. Aquilino 1 , J. Peng 1 , H. Wang 1 , D. Jaeger 1 , K. Tabakman 1 , R. Carter 1 , O. Hu 1 , W. Ma 1 , M. Joshi 1 , L. Lee 1
Affiliation
Low-dielectric constant (low-k) material is critical for advanced FinFET technology parasitic capacitance reduction to enable low-power and high-performance applications. Silicon Oxycarbonnitride (SiOCN) is one of the most promising low-k materials for FinFET gate sidewall spacer. The k value of SiOCN can be controlled in the range of 4.1–5.2 by modifying the chemical contents during the deposition process. However, the integration of SiOCN with k value lower than 5.2 for advanced FinFET technology faces substantial challenges associated with the material damage from subsequent manufacturing processes. Here, the authors demonstrate a hybrid low-k spacer scheme on a fully integrated 7 nm FinFET technology platform, in which SiOCN with k value of 4.5 was successfully integrated along the sidewalls of the gate electrode as spacer while retaining the structural integrity and dielectric properties. Device characterisation on the hybrid low-k spacer scheme (k = 4.5) demonstrated 12/11% reduction in P/NFET overlap capacitance (C OV) and 3% reduction in ring oscillator effective capacitance (C EFF) in comparison to the baseline reference using SiOCN with k value of 5.2 as spacer. Furthermore, reliability characterisation confirmed the dielectric breakdown voltage (V BD) and leakage current (I LKG) of the hybrid low-k spacer (k = 4.5) were comparable to the baseline reference (k = 5.2), meeting the technology requirements.
中文翻译:
用于降低高级 FinFET 技术寄生电容的混合低 k 间隔方案
低介电常数 (low-k) 材料对于先进的 FinFET 技术降低寄生电容以实现低功耗和高性能应用至关重要。氮氧化硅 (SiOCN) 是用于 FinFET 栅极侧壁间隔物的最有前途的低 k 材料之一。通过在沉积过程中改变化学成分,可以将 SiOCN 的 k 值控制在 4.1-5.2 的范围内。然而,对于先进的 FinFET 技术,k 值低于 5.2 的 SiOCN 的集成面临着与后续制造工艺的材料损坏相关的重大挑战。在这里,作者在完全集成的 7 nm FinFET 技术平台上展示了一种混合低 k 间隔方案,其中 SiOCN 的 k 值为 4。图 5 成功地沿栅电极的侧壁集成为隔离物,同时保持结构完整性和介电特性。与基准参考相比,混合低 k 间隔方案 (k = 4.5) 的器件特性表明 P/NFET 重叠电容 (C OV) 减少了 12/11%,环形振荡器有效电容 (C EFF) 减少了 3%使用 k 值为 5.2 的 SiOCN 作为间隔物。此外,可靠性表征证实了混合低 k 隔离物 (k = 4.5) 的介电击穿电压 (V BD) 和漏电流 (ILKG) 与基准参考 (k = 5.2) 相当,满足技术要求。5) 与使用 k 值为 5.2 的 SiOCN 作为间隔物的基线参考相比,P/NFET 重叠电容 (C OV) 减少了 12/11%,环形振荡器有效电容 (C EFF) 减少了 3%。此外,可靠性表征证实了混合低 k 隔离物 (k = 4.5) 的介电击穿电压 (V BD) 和漏电流 (ILKG) 与基准参考 (k = 5.2) 相当,满足技术要求。5) 与使用 k 值为 5.2 的 SiOCN 作为间隔物的基线参考相比,P/NFET 重叠电容 (C OV) 减少了 12/11%,环形振荡器有效电容 (C EFF) 减少了 3%。此外,可靠性表征证实了混合低 k 隔离物 (k = 4.5) 的介电击穿电压 (V BD) 和漏电流 (ILKG) 与基准参考 (k = 5.2) 相当,满足技术要求。
更新日期:2020-05-01
中文翻译:
用于降低高级 FinFET 技术寄生电容的混合低 k 间隔方案
低介电常数 (low-k) 材料对于先进的 FinFET 技术降低寄生电容以实现低功耗和高性能应用至关重要。氮氧化硅 (SiOCN) 是用于 FinFET 栅极侧壁间隔物的最有前途的低 k 材料之一。通过在沉积过程中改变化学成分,可以将 SiOCN 的 k 值控制在 4.1-5.2 的范围内。然而,对于先进的 FinFET 技术,k 值低于 5.2 的 SiOCN 的集成面临着与后续制造工艺的材料损坏相关的重大挑战。在这里,作者在完全集成的 7 nm FinFET 技术平台上展示了一种混合低 k 间隔方案,其中 SiOCN 的 k 值为 4。图 5 成功地沿栅电极的侧壁集成为隔离物,同时保持结构完整性和介电特性。与基准参考相比,混合低 k 间隔方案 (k = 4.5) 的器件特性表明 P/NFET 重叠电容 (C OV) 减少了 12/11%,环形振荡器有效电容 (C EFF) 减少了 3%使用 k 值为 5.2 的 SiOCN 作为间隔物。此外,可靠性表征证实了混合低 k 隔离物 (k = 4.5) 的介电击穿电压 (V BD) 和漏电流 (ILKG) 与基准参考 (k = 5.2) 相当,满足技术要求。5) 与使用 k 值为 5.2 的 SiOCN 作为间隔物的基线参考相比,P/NFET 重叠电容 (C OV) 减少了 12/11%,环形振荡器有效电容 (C EFF) 减少了 3%。此外,可靠性表征证实了混合低 k 隔离物 (k = 4.5) 的介电击穿电压 (V BD) 和漏电流 (ILKG) 与基准参考 (k = 5.2) 相当,满足技术要求。5) 与使用 k 值为 5.2 的 SiOCN 作为间隔物的基线参考相比,P/NFET 重叠电容 (C OV) 减少了 12/11%,环形振荡器有效电容 (C EFF) 减少了 3%。此外,可靠性表征证实了混合低 k 隔离物 (k = 4.5) 的介电击穿电压 (V BD) 和漏电流 (ILKG) 与基准参考 (k = 5.2) 相当,满足技术要求。