Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tuning the electrochemical performance of Ti3C2 and Hf3C2 monolayer by functional groups for metal-ion battery applications
Nanoscale ( IF 5.8 ) Pub Date : 2021-05-10 , DOI: 10.1039/d0nr07899a Zhifang Yang 1 , Yanping Zheng 2 , Wenliang Li 1 , Jingping Zhang 1
Nanoscale ( IF 5.8 ) Pub Date : 2021-05-10 , DOI: 10.1039/d0nr07899a Zhifang Yang 1 , Yanping Zheng 2 , Wenliang Li 1 , Jingping Zhang 1
Affiliation
It is extremely important to design and explore high-efficiency anode materials in metal-ion batteries with strong stability, good electronic conductivity, and high storage capacity. Mxenes are susceptible to functionalization due to the presence of dangling bonds on the surface; thus, their chemical properties can be tuned accordingly by functional groups, which provide an opportunity to design novel materials with good electrochemical performance. The geometry and stability of Ti3C2X2 and Hf3C2X2 (X = Si, P, S, and Cl) monolayers are explored with the aid of density functional theory and the ab initio molecular dynamics (AIMD) simulations. Ti3C2X2 and Hf3C2X2 (X = S, Cl) exhibit high thermodynamic stability than Ti3C2X2 and Hf3C2X2 (X = Si, P) as found from formation energy and AIMD simulations. Then, the electrochemical performance of S- and Cl-functionalized Ti3C2 and Hf3C2 monolayers was further explored for use as anode materials in metal-ion batteries (including Li, Na, K, Mg, Ca, and Al). The high structural stability, metallic nature, low diffusion energy barrier, and proper open circuit voltage make Ti3C2 and Hf3C2 monolayer-functionalized with S and Cl as rechargeable metal-ion anode materials. More importantly, the stable multilayer adsorption of Li and Na (Li and Na: up to two layers) ensures high capacities for the Ti3C2S2 monolayer in Li- and Na-ion batteries (462.86 and 462.86 mA h g−1, respectively). In particular, compared with other 2D materials, Ti3C2S2 monolayer exhibits a higher capacity when used as an anode electrode material for Mg-ion batteries, mainly due to the perfect matching of the diameter of Mg and the lattice constant of Ti3C2S2. The results show that S- and Cl-functionalized Mxenes are promising metal-ion anode materials and provide valuable insights into the next generation of energy storage and conversion devices. This discovery is of positive significance for the design of new MXenes.
中文翻译:
通过用于金属离子电池应用的官能团调节 Ti3C2 和 Hf3C2 单层的电化学性能
设计和探索稳定性强、电子导电性好、存储容量高的高效金属离子电池负极材料极为重要。由于表面上存在悬空键,Mxenes 容易被官能化;因此,它们的化学性质可以通过官能团进行相应调整,这为设计具有良好电化学性能的新型材料提供了机会。借助密度泛函理论和ab initio分子动力学 (AIMD) 模拟,探索了Ti 3 C 2 X 2和 Hf 3 C 2 X 2(X = Si、P、S 和 Cl)单层的几何形状和稳定性. 钛3 C 2 X 2和 Hf 3 C 2 X 2 (X = S, Cl) 表现出比 Ti 3 C 2 X 2和 Hf 3 C 2 X 2 (X = Si, P)高的热力学稳定性,如从形成能和AIMD 模拟。然后,S-和Cl-官能化的Ti 3 C 2和Hf 3 C 2的电化学性能进一步探索了单层用作金属离子电池(包括锂、钠、钾、镁、钙和铝)的负极材料。高结构稳定性、金属性质、低扩散能垒和适当的开路电压使 Ti 3 C 2和 Hf 3 C 2单层功能化与 S 和 Cl 作为可充电金属离子负极材料。更重要的是,锂和钠的稳定多层吸附(锂和钠:最多两层)确保了锂和钠离子电池中Ti 3 C 2 S 2单层的高容量(462.86 和 462.86 mA hg -1,分别)。特别是与其他二维材料相比,Ti 3 C2 S 2单分子层作为镁离子电池负极材料时表现出更高的容量,这主要是由于Mg的直径和Ti 3 C 2 S 2的晶格常数的完美匹配。结果表明,硫和氯官能化的 Mxenes 是很有前途的金属离子负极材料,并为下一代能量存储和转换设备提供了宝贵的见解。这一发现对新型MXenes的设计具有积极意义。
更新日期:2021-06-28
中文翻译:
通过用于金属离子电池应用的官能团调节 Ti3C2 和 Hf3C2 单层的电化学性能
设计和探索稳定性强、电子导电性好、存储容量高的高效金属离子电池负极材料极为重要。由于表面上存在悬空键,Mxenes 容易被官能化;因此,它们的化学性质可以通过官能团进行相应调整,这为设计具有良好电化学性能的新型材料提供了机会。借助密度泛函理论和ab initio分子动力学 (AIMD) 模拟,探索了Ti 3 C 2 X 2和 Hf 3 C 2 X 2(X = Si、P、S 和 Cl)单层的几何形状和稳定性. 钛3 C 2 X 2和 Hf 3 C 2 X 2 (X = S, Cl) 表现出比 Ti 3 C 2 X 2和 Hf 3 C 2 X 2 (X = Si, P)高的热力学稳定性,如从形成能和AIMD 模拟。然后,S-和Cl-官能化的Ti 3 C 2和Hf 3 C 2的电化学性能进一步探索了单层用作金属离子电池(包括锂、钠、钾、镁、钙和铝)的负极材料。高结构稳定性、金属性质、低扩散能垒和适当的开路电压使 Ti 3 C 2和 Hf 3 C 2单层功能化与 S 和 Cl 作为可充电金属离子负极材料。更重要的是,锂和钠的稳定多层吸附(锂和钠:最多两层)确保了锂和钠离子电池中Ti 3 C 2 S 2单层的高容量(462.86 和 462.86 mA hg -1,分别)。特别是与其他二维材料相比,Ti 3 C2 S 2单分子层作为镁离子电池负极材料时表现出更高的容量,这主要是由于Mg的直径和Ti 3 C 2 S 2的晶格常数的完美匹配。结果表明,硫和氯官能化的 Mxenes 是很有前途的金属离子负极材料,并为下一代能量存储和转换设备提供了宝贵的见解。这一发现对新型MXenes的设计具有积极意义。