当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Selective Electrocatalytic Reduction of Nitrate to Ammonia with Nickel Phosphide
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-06-23 , DOI: 10.1021/acsami.0c22338 Qiufang Yao 1 , Jiabin Chen 1 , Shaoze Xiao 1 , Yalei Zhang 1, 2 , Xuefei Zhou 1, 2, 3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-06-23 , DOI: 10.1021/acsami.0c22338 Qiufang Yao 1 , Jiabin Chen 1 , Shaoze Xiao 1 , Yalei Zhang 1, 2 , Xuefei Zhou 1, 2, 3
Affiliation
Liquid ammonia is considered a sustainable liquid fuel and an easily transportable carrier of hydrogen energy; however, its synthesis processes are energy-consuming, high cost, and low yield rate. Herein, we report the electrocatalytic reduction of nitrate (NO3–) (ERN) to ammonia (NH3) with nickel phosphide (Ni2P) used as a noble metal-free cathode. Ni2P with (111) facet was grown in situ on nickel foam (NFP), which was regarded as a self-supporting cathode for ERN to synthesis NH3 with high yield rate (0.056 mmol h–1 mg–1) and superior faradaic efficiency of 99.23%. The derived atomic H (*H), verified by a quenching experiment and an electron spin resonance (ESR) technique, effectively enhanced the high selectivity for NH3 generation. DFT calculations indicated that *NO3 was deoxygenated to *NO2 and *NO, and *NO was subsequently hydrogenated with *H to generate NH3 with an energy releasing process (ΔG < 0). OLEMS also proved that NO was the merely gas intermediate. NFP exhibited the unique superhydrophilic surface, metallic properties, low impedance, and abundant surface sites, favorable for adsorption of NO3–, generation of *H, and then hydrogenation of NO3–. Hence, NFP cathode showed high selectivity for NH3 (89.1%) in ERN. NFP with long-term stability and low energy consumption provides a facile strategy for synthesis of NH3 and elimination of NO3– contamination.
中文翻译:
磷化镍选择性电催化还原硝酸盐为氨
液氨被认为是一种可持续的液体燃料,也是一种易于运输的氢能载体;但其合成过程耗能大、成本高、产率低。在此,我们报告了使用磷化镍 (Ni 2 P) 作为无贵金属阴极将硝酸盐 (NO 3 – ) (ERN) 电催化还原为氨 (NH 3 ) 。具有 (111) 面的Ni 2 P 在镍泡沫 (NFP) 上原位生长,被认为是 ERN 的自支撑阴极,以高产率 (0.056 mmol h –1 mg –1)合成 NH 3) 和 99.23% 的优越法拉第效率。通过猝灭实验和电子自旋共振 (ESR) 技术验证的衍生原子 H (*H) 有效提高了生成NH 3的高选择性。DFT 计算表明,*NO 3被脱氧为*NO 2和*NO,并且*NO 随后与*H 氢化以通过能量释放过程(Δ G < 0)生成NH 3。OLEMS 还证明 NO 是唯一的气体中间体。NFP表现出独特的超亲水表面、金属性质、低阻抗和丰富的表面位点,有利于NO 3 – 的吸附、*H的生成和NO 3 –的加氢. 因此,NFP 阴极对ERN 中的NH 3 (89.1%)显示出高选择性。具有长期稳定性和低能耗的 NFP 为合成 NH 3和消除 NO 3 –污染提供了一种简便的策略。
更新日期:2021-07-07
中文翻译:
磷化镍选择性电催化还原硝酸盐为氨
液氨被认为是一种可持续的液体燃料,也是一种易于运输的氢能载体;但其合成过程耗能大、成本高、产率低。在此,我们报告了使用磷化镍 (Ni 2 P) 作为无贵金属阴极将硝酸盐 (NO 3 – ) (ERN) 电催化还原为氨 (NH 3 ) 。具有 (111) 面的Ni 2 P 在镍泡沫 (NFP) 上原位生长,被认为是 ERN 的自支撑阴极,以高产率 (0.056 mmol h –1 mg –1)合成 NH 3) 和 99.23% 的优越法拉第效率。通过猝灭实验和电子自旋共振 (ESR) 技术验证的衍生原子 H (*H) 有效提高了生成NH 3的高选择性。DFT 计算表明,*NO 3被脱氧为*NO 2和*NO,并且*NO 随后与*H 氢化以通过能量释放过程(Δ G < 0)生成NH 3。OLEMS 还证明 NO 是唯一的气体中间体。NFP表现出独特的超亲水表面、金属性质、低阻抗和丰富的表面位点,有利于NO 3 – 的吸附、*H的生成和NO 3 –的加氢. 因此,NFP 阴极对ERN 中的NH 3 (89.1%)显示出高选择性。具有长期稳定性和低能耗的 NFP 为合成 NH 3和消除 NO 3 –污染提供了一种简便的策略。