当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Growth of ZnIn2S4 on MOF-Derived Ni–Fe LDH to Construct Ternary-Shelled Nanotubes for Efficient Photocatalytic Hydrogen Evolution
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2021-06-22 , DOI: 10.1021/acs.inorgchem.1c01064 Shuang Zhao 1 , Qian Liang 1 , Wen Gao 1 , Man Zhou 1 , Chao Yao 1 , Song Xu 1 , Zhongyu Li 1
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2021-06-22 , DOI: 10.1021/acs.inorgchem.1c01064 Shuang Zhao 1 , Qian Liang 1 , Wen Gao 1 , Man Zhou 1 , Chao Yao 1 , Song Xu 1 , Zhongyu Li 1
Affiliation
A rational design of a novel ternary-shelled nanotube is attractive in photocatalytic water splitting. Herein, ZnIn2S4 nanosheets were in situ grown on the surface of MIL-88A-derived Ni–Fe layered double hydroxide (LDH) to fabricate ternary-shelled nanotubes (ZIS@Ni–Fe LDH) via a self-assembly strategy. Characterization indicates that the ZIS@Ni–Fe LDH heterostructure exhibits a high surface area and a well-defined ternary-shelled hollow structure. The optimal heterostructure presents a remarkably improved photocatalytic hydrogen production rate (2035.81 μmol g–1 h–1) compared with bare ZnIn2S4 and MIL-88A-derived Ni–Fe LDH under visible light illumination. The effect of ZnIn2S4 loading on the photocatalytic performance and stability of ZIS@Ni–Fe LDH is systematically studied. The ZIS@Ni–Fe LDH heterostructure can make better use of the inner space, provide abundant reactive sites, improve light harvesting, accelerate interfacial electron transfer, and further promote photocatalytic hydrogen evolution. Based on the electrocatalytic performance, the probable photocatalytic mechanism and the electron transfer pathway can be proposed. Our work provides a facile and efficient strategy to construct ternary-shelled heterojunction photocatalysts.
中文翻译:
在MOF 衍生的 Ni-Fe LDH 上原位生长 ZnIn 2 S 4以构建三元壳纳米管以实现高效的光催化产氢
新型三元壳纳米管的合理设计在光催化分解水方面具有吸引力。在此,ZnIn 2 S 4纳米片在MIL-88A 衍生的Ni-Fe 层状双氢氧化物(LDH)的表面原位生长,以通过自组装策略制造三元壳纳米管(ZIS@Ni-Fe LDH)。表征表明,ZIS@Ni-Fe LDH 异质结构具有高表面积和明确的三元壳空心结构。与裸ZnIn 2 S 4相比,最佳异质结构显着提高了光催化产氢速率(2035.81 μmol g –1 h –1)和 MIL-88A 衍生的 Ni-Fe LDH 在可见光照射下。系统研究了ZnIn 2 S 4负载量对ZIS@Ni-Fe LDH光催化性能和稳定性的影响。ZIS@Ni-Fe LDH异质结构可以更好地利用内部空间,提供丰富的反应位点,改善光收集,加速界面电子转移,进一步促进光催化析氢。基于电催化性能,可以提出可能的光催化机理和电子转移途径。我们的工作为构建三元壳异质结光催化剂提供了一种简便有效的策略。
更新日期:2021-07-05
中文翻译:
在MOF 衍生的 Ni-Fe LDH 上原位生长 ZnIn 2 S 4以构建三元壳纳米管以实现高效的光催化产氢
新型三元壳纳米管的合理设计在光催化分解水方面具有吸引力。在此,ZnIn 2 S 4纳米片在MIL-88A 衍生的Ni-Fe 层状双氢氧化物(LDH)的表面原位生长,以通过自组装策略制造三元壳纳米管(ZIS@Ni-Fe LDH)。表征表明,ZIS@Ni-Fe LDH 异质结构具有高表面积和明确的三元壳空心结构。与裸ZnIn 2 S 4相比,最佳异质结构显着提高了光催化产氢速率(2035.81 μmol g –1 h –1)和 MIL-88A 衍生的 Ni-Fe LDH 在可见光照射下。系统研究了ZnIn 2 S 4负载量对ZIS@Ni-Fe LDH光催化性能和稳定性的影响。ZIS@Ni-Fe LDH异质结构可以更好地利用内部空间,提供丰富的反应位点,改善光收集,加速界面电子转移,进一步促进光催化析氢。基于电催化性能,可以提出可能的光催化机理和电子转移途径。我们的工作为构建三元壳异质结光催化剂提供了一种简便有效的策略。