当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stability and Catalytic Performance of Single-Atom Catalysts Supported on Doped and Defective Graphene for CO2 Hydrogenation to Formic Acid: A First-Principles Study
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-06-22 , DOI: 10.1021/acsanm.1c00959 Sajjad Ali 1, 2 , Rashid Iqbal 3 , Azim Khan 2 , Shafiq Ur Rehman 4 , Muhammad Haneef 5 , Lichang Yin 2
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2021-06-22 , DOI: 10.1021/acsanm.1c00959 Sajjad Ali 1, 2 , Rashid Iqbal 3 , Azim Khan 2 , Shafiq Ur Rehman 4 , Muhammad Haneef 5 , Lichang Yin 2
Affiliation
As an essential component of single-atom catalysts, support materials determine the dispersion, utilization, and stability of single metal atoms. Here, we reported the potential of defective and doped graphene as a single-atom catalyst (SAC) support for CO2 conversion to formic acid by hydrogenation. The support effect was screened based on the stability of a single-metal atom. Our calculation revealed that Cu, Pd, and Ru supported on defective graphene with monovacancy (m-VacG) have higher adsorption energy than the cohesive energy of their bulk counterparts; therefore we selected Cu, Pd, and Ru supported on m-VacG as potential SACs to examine the catalytic reaction. The stability and reactivity of SACs/m-VacG were uncovered by molecular dynamics (MD) simulations, migration barrier calculation, and electronic structure analysis. The reaction of CO2 hydrogenation proceeds through two pathways starting from different initial states, i.e., the coadsorption of H2 and CO2 on SACs/m-VacG (path A) and H2 adsorption on SACs/m-VacG (path B). From the reaction pathways analysis, it is found that path B dominates the entire reaction thermodynamically with lower energy barrier compared with path A. Moreover, Pd supported on m-VacG is predicted to be the highest active SAC with the lowest energy barrier along the reaction path.
中文翻译:
掺杂和缺陷石墨烯负载的单原子催化剂在 CO2 加氢制甲酸中的稳定性和催化性能:第一性原理研究
作为单原子催化剂的重要组成部分,载体材料决定了单个金属原子的分散、利用和稳定性。在这里,我们报告了有缺陷和掺杂的石墨烯作为 CO 2单原子催化剂 (SAC) 载体的潜力加氢转化为甲酸。基于单金属原子的稳定性筛选支撑效应。我们的计算表明,在单空位缺陷石墨烯 (m-VacG) 上负载的 Cu、Pd 和 Ru 的吸附能高于其本体对应物的内聚能;因此,我们选择了 m-VacG 上负载的 Cu、Pd 和 Ru 作为潜在的 SAC 来检查催化反应。分子动力学 (MD) 模拟、迁移势垒计算和电子结构分析揭示了 SACs/m-VacG 的稳定性和反应性。CO 2加氢反应从不同的初始状态开始通过两条途径进行,即H 2和CO 2在SACs/m-VacG(路径A)和H 2 上的共吸附SACs/m-VacG 上的吸附(路径 B)。从反应路径分析,发现路径 B 在热力学上占主导地位,与路径 A 相比,具有更低的能垒。此外,预计 m-VacG 上负载的 Pd 是最高活性的 SAC,沿反应的能垒最低小路。
更新日期:2021-07-23
中文翻译:
掺杂和缺陷石墨烯负载的单原子催化剂在 CO2 加氢制甲酸中的稳定性和催化性能:第一性原理研究
作为单原子催化剂的重要组成部分,载体材料决定了单个金属原子的分散、利用和稳定性。在这里,我们报告了有缺陷和掺杂的石墨烯作为 CO 2单原子催化剂 (SAC) 载体的潜力加氢转化为甲酸。基于单金属原子的稳定性筛选支撑效应。我们的计算表明,在单空位缺陷石墨烯 (m-VacG) 上负载的 Cu、Pd 和 Ru 的吸附能高于其本体对应物的内聚能;因此,我们选择了 m-VacG 上负载的 Cu、Pd 和 Ru 作为潜在的 SAC 来检查催化反应。分子动力学 (MD) 模拟、迁移势垒计算和电子结构分析揭示了 SACs/m-VacG 的稳定性和反应性。CO 2加氢反应从不同的初始状态开始通过两条途径进行,即H 2和CO 2在SACs/m-VacG(路径A)和H 2 上的共吸附SACs/m-VacG 上的吸附(路径 B)。从反应路径分析,发现路径 B 在热力学上占主导地位,与路径 A 相比,具有更低的能垒。此外,预计 m-VacG 上负载的 Pd 是最高活性的 SAC,沿反应的能垒最低小路。