当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmental-Dependent Impedance Spectroscopy
Advanced Science ( IF 14.3 ) Pub Date : 2021-06-21 , DOI: 10.1002/advs.202002510
Dohyung Kim 1 , Eric S Muckley 2 , Nicole Creange 3 , Ting Hei Wan 4 , Myung Hyun Ann 5 , Emanuele Quattrocchi 4 , Rama K Vasudevan 2 , Jong H Kim 5 , Francesco Ciucci 4, 6 , Ilia N Ivanov 2 , Sergei V Kalinin 2 , Mahshid Ahmadi 1
Affiliation  

Hybrid organic–inorganic perovskites are one of the promising candidates for the next-generation semiconductors due to their superlative optoelectronic properties. However, one of the limiting factors for potential applications is their chemical and structural instability in different environments. Herein, the stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cell is explored in different atmospheres using impedance spectroscopy. An equivalent circuit model and distribution of relaxation times (DRTs) are used to effectively analyze impedance spectra. DRT is further analyzed via machine learning workflow based on the non-negative matrix factorization of reconstructed relaxation time spectra. This exploration provides the interplay of charge transport dynamics and recombination processes under environment stimuli and illumination. The results reveal that in the dark, oxygen atmosphere induces an increased hole concentration with less ionic character while ionic motion is dominant under ambient air. Under 1 Sun illumination, the environment-dependent impedance responses show a more striking effect compared with dark conditions. In this case, the increased transport resistance observed under oxygen atmosphere in equivalent circuit analysis arises due to interruption of photogenerated hole carriers. The results not only shed light on elucidating transport mechanisms of perovskite solar cells in different environments but also offer an effective interpretation of impedance responses.

中文翻译:


通过环境依赖性阻抗谱的机器学习分析探索混合钙钛矿太阳能电池的输运行为



有机-无机杂化钙钛矿因其卓越的光电特性而成为下一代半导体的有前途的候选材料之一。然而,潜在应用的限制因素之一是它们在不同环境中的化学和结构不稳定性。在此,利用阻抗谱探讨了(FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15钙钛矿太阳能电池在不同气氛下的稳定性。使用等效电路模型和弛豫时间 (DRT) 分布来有效分析阻抗谱。基于重建弛豫时间谱的非负矩阵分解,通过机器学习工作流程进一步分析 DRT。这种探索提供了环境刺激和照明下电荷传输动力学和重组过程的相互作用。结果表明,在黑暗中,氧气气氛会导致空穴浓度增加,而离子特征较少,而在环境空气下离子运动占主导地位。在 1 Sun 光照下,与黑暗条件相比,与环境相关的阻抗响应表现出更显着的效果。在这种情况下,在等效电路分析中在氧气气氛下观察到的传输电阻增加是由于光生空穴载流子的中断而引起的。研究结果不仅阐明了钙钛矿太阳能电池在不同环境中的输运机制,而且还提供了阻抗响应的有效解释。
更新日期:2021-08-04
down
wechat
bug