Purpose
Data science lacks a distinctive identity and a theory-informed approach, both for its own sake and to properly be applied conjointly to the social sciences. This paper’s purposes are twofold: to provide (1) data science an illustration of theory adoption, able to address explanation and support prediction/prescription capacities and (2) a rationale for identification of the key phenomena and properties of data science so that the data speak through a contextual understanding of reality, broader than has been usual.
Design/methodology/approach
A literature review and a derived conceptual research model for a push–pull approach (adapted for a data science study in the management field) are presented. A real location–allocation problem is solved through a specific algorithm and explained in the light of the adapted push–pull theory, serving as an instance for a data science theory-informed application in the management field.
Findings
This study advances knowledge on the definition of data science key phenomena as not just pure “data”, but interrelated data and datasets properties, as well as on the specific adaptation of the push-pull theory through its definition, dimensionality and interaction model, also illustrating how to apply the theory in a data science theory-informed research. The proposed model contributes to the theoretical strengthening of data science, still an incipient area, and the solution of the location-allocation problem suggests the applicability of the proposed approach to broad data science problems, alleviating the criticism on the lack of explanation and the focus on pattern recognition in data science practice and research.
Research limitations/implications
The proposed algorithm requires the previous definition of a perimeter of interest. This aspect should be characterised as an antecedent to the model, which is a strong assumption. As for prescription, in this specific case, one has to take complementary actions, since theory, model and algorithm are not detached from in loco visits, market research or interviews with potential stakeholders.
Practical implications
This study offers a conceptual model for practical location–allocation problem analyses, based on the push–pull theoretical components. So, it suggests a proper definition for each component (the object, the perspective, the forces, its degrees and the nature of the movement). The proposed model has also an algorithm for computational implementation, which visually describes and explains components interaction, allowing further simulation (estimated forces degrees) for prediction.
Originality/value
First, this study identifies an overlap of push–pull theoretical approaches, which suggests theory adoption eventually as mere common sense, weakening further theoretical development. Second, this study elaborates a definition for the push–pull theory, a dimensionality and a relationship between its components. Third, a typical location–allocation problem is analysed in the light of the refactored theory, showing its adequacy for that class of problems. And fourth, this study suggests that the essence of a data science should be the study of contextual relationships among data, and that the context should be provided by the spatial, temporal, political, economic and social analytical interests.