当前位置:
X-MOL 学术
›
Adv. Opt. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Flip-Over Plasmonic Structure for Photoluminescence Enhancement of Encapsulated WS2 Monolayers
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2021-06-19 , DOI: 10.1002/adom.202100397 Minpeng Liang 1 , Chunrui Han 2, 3 , Oleksandr Zheliuk 1 , Qihong Chen 3, 4 , Puhua Wan 1 , Xiaoli Peng 1 , Le Zhang 1, 5 , Jianting Ye 1
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2021-06-19 , DOI: 10.1002/adom.202100397 Minpeng Liang 1 , Chunrui Han 2, 3 , Oleksandr Zheliuk 1 , Qihong Chen 3, 4 , Puhua Wan 1 , Xiaoli Peng 1 , Le Zhang 1, 5 , Jianting Ye 1
Affiliation
Transition metal dichalcogenide (TMD) monolayers, with their direct band gaps, have attracted wide attention from the fields of photonics and optoelectronics. However, monolayer semiconducting TMDs generally suffer from low excitation absorption and emission efficiency, limiting their further applications. Here a flip-over plasmonic structure comprised of silver nano-disk arrays supporting a WS2 monolayer sandwiched by hexagonal boron nitride (h-BN) layers is demonstrated. The flip-over configuration optimizes the optical process with a free excitation/emission path from the top and a strong plasmonic interaction from the bottom. As a result, the photoluminescence from the TMD monolayers can be greatly enhanced more than tenfold by optimizing the metasurface, which can be further improved nearly tenfold by optimizing the thickness of bottom h-BN. This study shows the advantages of using the flip-over structure, where the plasmonic interaction between the metasurface and TMDs can be tuned by introducing optimized plasmonic arrays and h-BN layers with suitable thickness. This hybrid device configuration paves a reliable platform to study the light–matter interaction, achieving highly efficient plasmonic TMD devices.
中文翻译:
用于封装 WS2 单层光致发光增强的翻转等离子体结构
过渡金属二硫属化物 (TMD) 单层具有直接带隙,引起了光子学和光电子学领域的广泛关注。然而,单层半导体 TMD 通常受到低激发吸收和发射效率的影响,限制了它们的进一步应用。这里的翻转等离子体结构由银纳米盘阵列组成,支持 WS 2单层,夹在六方氮化硼(h-BN) 层。翻转配置通过顶部的自由激发/发射路径和底部的强等离子体相互作用优化光学过程。因此,通过优化超表面,来自 TMD 单层的光致发光可以大大增强十倍以上,通过优化底部h- BN的厚度可以进一步提高近十倍。这项研究显示了使用翻转结构的优势,其中可以通过引入优化的等离子体阵列和具有合适厚度的h- BN 层来调整超表面和 TMD 之间的等离子体相互作用。这种混合器件配置为研究光-物质相互作用奠定了可靠的平台,实现了高效的等离子体 TMD 器件。
更新日期:2021-08-19
中文翻译:
用于封装 WS2 单层光致发光增强的翻转等离子体结构
过渡金属二硫属化物 (TMD) 单层具有直接带隙,引起了光子学和光电子学领域的广泛关注。然而,单层半导体 TMD 通常受到低激发吸收和发射效率的影响,限制了它们的进一步应用。这里的翻转等离子体结构由银纳米盘阵列组成,支持 WS 2单层,夹在六方氮化硼(h-BN) 层。翻转配置通过顶部的自由激发/发射路径和底部的强等离子体相互作用优化光学过程。因此,通过优化超表面,来自 TMD 单层的光致发光可以大大增强十倍以上,通过优化底部h- BN的厚度可以进一步提高近十倍。这项研究显示了使用翻转结构的优势,其中可以通过引入优化的等离子体阵列和具有合适厚度的h- BN 层来调整超表面和 TMD 之间的等离子体相互作用。这种混合器件配置为研究光-物质相互作用奠定了可靠的平台,实现了高效的等离子体 TMD 器件。