当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rugged Soft Robots using Tough, Stretchable, and Self-Healable Adhesive Elastomers
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-06-19 , DOI: 10.1002/adfm.202103097 Matthew Wei Ming Tan 1 , Gurunathan Thangavel 1 , Pooi See Lee 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-06-19 , DOI: 10.1002/adfm.202103097 Matthew Wei Ming Tan 1 , Gurunathan Thangavel 1 , Pooi See Lee 1
Affiliation
Soft robots are susceptible to premature failure from physical damages incurred within dynamic environments. To address this, we report an elastomer with high toughness, room temperature self-healing, and strong adhesiveness, allowing both prevention of damages and recovery for soft robotics. By functionalizing polyurethane with hierarchical hydrogen bonds from ureido-4[1H]-pyrimidinone (UPy) and carboxyl groups, high toughness (74.85 MJ m−3), tensile strength (9.44 MPa), and strain (2340%) can be achieved. Furthermore, solvent-assisted self-healing at room temperature enables retention of high toughness (41.74 MJ m−3), tensile strength (5.57 MPa), and strain (1865%) within only 12 h. The elastomer possesses a high dielectric constant (≈9) that favors its utilization as a self-healing dielectric elastomer actuator (DEA) for soft robotics. Displaying high area strains of ≈31.4% and ≈19.3% after mechanical and electrical self-healing, respectively, the best performing self-healable DEA is achieved. With abundant hydrogen bonds, high adhesive strength without additional curing or heating is also realized. Having both actuation and adhesive properties, a “stick-on” strategy for the assembly of robust soft robots is realized, allowing soft robotic components to be easily reassembled or replaced upon severe damage. This study highlights the potential of soft robots with extreme ruggedness for different operating conditions.
中文翻译:
使用坚韧、可拉伸和自修复粘性弹性体的坚固软机器人
软机器人容易因动态环境中发生的物理损坏而过早失效。为了解决这个问题,我们报告了一种具有高韧性、室温自愈性和强粘性的弹性体,可以防止软机器人损坏和恢复。通过使用来自脲基-4[1H]-嘧啶酮 (UPy) 和羧基的分级氢键对聚氨酯进行功能化,可以获得高韧性 (74.85 MJ m -3 )、拉伸强度 (9.44 MPa) 和应变 (2340%)。此外,室温下的溶剂辅助自修复能够保持高韧性(41.74 MJ m -3)、拉伸强度 (5.57 MPa) 和应变 (1865%) 在仅 12 小时内。该弹性体具有高介电常数 (≈9),有利于其用作软机器人的自修复介电弹性体致动器 (DEA)。在机械和电自愈后分别显示 ≈31.4% 和 ≈19.3% 的高面积应变,实现了性能最佳的自愈 DEA。凭借丰富的氢键,无需额外固化或加热即可实现高粘合强度。具有驱动和粘合特性,实现了用于组装坚固软机器人的“粘贴”策略,允许软机器人组件在严重损坏时轻松重新组装或更换。这项研究突出了具有极端坚固性的软机器人在不同操作条件下的潜力。
更新日期:2021-08-20
中文翻译:
使用坚韧、可拉伸和自修复粘性弹性体的坚固软机器人
软机器人容易因动态环境中发生的物理损坏而过早失效。为了解决这个问题,我们报告了一种具有高韧性、室温自愈性和强粘性的弹性体,可以防止软机器人损坏和恢复。通过使用来自脲基-4[1H]-嘧啶酮 (UPy) 和羧基的分级氢键对聚氨酯进行功能化,可以获得高韧性 (74.85 MJ m -3 )、拉伸强度 (9.44 MPa) 和应变 (2340%)。此外,室温下的溶剂辅助自修复能够保持高韧性(41.74 MJ m -3)、拉伸强度 (5.57 MPa) 和应变 (1865%) 在仅 12 小时内。该弹性体具有高介电常数 (≈9),有利于其用作软机器人的自修复介电弹性体致动器 (DEA)。在机械和电自愈后分别显示 ≈31.4% 和 ≈19.3% 的高面积应变,实现了性能最佳的自愈 DEA。凭借丰富的氢键,无需额外固化或加热即可实现高粘合强度。具有驱动和粘合特性,实现了用于组装坚固软机器人的“粘贴”策略,允许软机器人组件在严重损坏时轻松重新组装或更换。这项研究突出了具有极端坚固性的软机器人在不同操作条件下的潜力。