当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Oxygen Vacancy Engineering in Na3V2(PO4)3 for Boosting Sodium Storage Kinetics
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2021-06-12 , DOI: 10.1002/admi.202100188 Minxia Jiang 1 , Dan Xu 1 , Baifeng Yang 1 , Chaozhen Zhang 1 , Minhua Cao 1
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2021-06-12 , DOI: 10.1002/admi.202100188 Minxia Jiang 1 , Dan Xu 1 , Baifeng Yang 1 , Chaozhen Zhang 1 , Minhua Cao 1
Affiliation
Improving Na-ion diffusion kinetics is an effective strategy to boost the sodium storage performance of electrode materials for sodium ion batteries (SIBs). Herein, an oxygen vacancy engineering is reported to evidently enhance Na-ion diffusion kinetics of Na3V2(PO4)3 and accordingly boost sodium storage performance. Na3V2(PO4)3/C with different molar contents of Cu doping (0%, 2.5%, 4%, 5%, and 6%) are synthesized using a simple sol–gel method followed by an annealing treatment. The experimental results show that Cu2+ successfully replaces the V3+ sites of Na3V2(PO4)3 and that does not change its phase composition. The introduction of Cu2+ not only results in the formation of V4+ to maintain charge balance, leading to a shorter VO bond, but also promotes the generation of oxygen vacancies and accordingly facilitates Na-ion diffusion kinetics. As expected, the optimal sample displays a stable capacity of 111.4 mA h g−1 with capacity retention of 90.4% over 300 cycles at 1 C and a high rate capacity of 83.8 mA h g−1 at 20 C. The studies demonstrate that the Cu doping is favorable for the electrochemical enhancement of Na3V2(PO4)3, which provides a promising prospect for Na3V2(PO4)3 as a cathode for SIBs.
中文翻译:
Na3V2(PO4)3 中的氧空位工程促进钠储存动力学
改善钠离子扩散动力学是提高钠离子电池(SIBs)电极材料储钠性能的有效策略。在此,据报道氧空位工程明显增强了Na 3 V 2 (PO 4 ) 3的钠离子扩散动力学,从而提高了钠存储性能。Na 3 V 2 (PO 4 ) 3 /C 具有不同的铜掺杂摩尔含量(0%、2.5%、4%、5% 和 6%)是使用简单的溶胶-凝胶方法合成的,然后进行退火处理。实验结果表明Cu 2+成功取代了Na 3的V 3+位点V 2 (PO 4 ) 3并且不改变其相组成。Cu 2+的引入不仅导致形成V 4+以维持电荷平衡,导致更短的V O键,而且促进氧空位的产生,从而促进Na离子扩散动力学。正如预期的那样,最佳样品显示出 111.4 mA hg -1的稳定容量,1 C 下 300 次循环的容量保持率为 90.4%,20 C 下的高倍率容量为 83.8 mA hg -1。研究表明 Cu 掺杂有利于 Na 3 V 2 (PO4 ) 3,这为Na 3 V 2 (PO 4 ) 3作为SIBs的阴极提供了广阔的前景。
更新日期:2021-07-09
中文翻译:
Na3V2(PO4)3 中的氧空位工程促进钠储存动力学
改善钠离子扩散动力学是提高钠离子电池(SIBs)电极材料储钠性能的有效策略。在此,据报道氧空位工程明显增强了Na 3 V 2 (PO 4 ) 3的钠离子扩散动力学,从而提高了钠存储性能。Na 3 V 2 (PO 4 ) 3 /C 具有不同的铜掺杂摩尔含量(0%、2.5%、4%、5% 和 6%)是使用简单的溶胶-凝胶方法合成的,然后进行退火处理。实验结果表明Cu 2+成功取代了Na 3的V 3+位点V 2 (PO 4 ) 3并且不改变其相组成。Cu 2+的引入不仅导致形成V 4+以维持电荷平衡,导致更短的V O键,而且促进氧空位的产生,从而促进Na离子扩散动力学。正如预期的那样,最佳样品显示出 111.4 mA hg -1的稳定容量,1 C 下 300 次循环的容量保持率为 90.4%,20 C 下的高倍率容量为 83.8 mA hg -1。研究表明 Cu 掺杂有利于 Na 3 V 2 (PO4 ) 3,这为Na 3 V 2 (PO 4 ) 3作为SIBs的阴极提供了广阔的前景。