当前位置: X-MOL 学术IEEE Wirel. Commun. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-Objective Resource Allocation for IRS-Aided SWIPT
IEEE Wireless Communications Letters ( IF 4.6 ) Pub Date : 2021-03-12 , DOI: 10.1109/lwc.2021.3065844
Ata Khalili , Shayan Zargari , Qingqing Wu , Derrick Wing Kwan Ng , Rui Zhang

In this letter, we study the resource allocation for a multiuser intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) system. Specifically, a multi-antenna base station (BS) transmits energy and information signals simultaneously to multiple energy harvesting receivers (EHRs) and information decoding receivers (IDRs) assisted by an IRS. Under this setup, we introduce a multi-objective optimization (MOOP) framework to investigate the fundamental trade-off between the data sum-rate maximization and the total harvested energy maximization, by jointly optimizing the energy/information beamforming vectors at the BS and the phase shifts at the IRS. This MOOP problem is first converted to a single-objective optimization problem (SOOP) via the ε-constraint method and then solved by majorization minimization (MM) and inner approximation (IA) techniques. Simulation results unveil a non-trivial trade-off between the considered competing objectives, as well as the superior performance of the proposed scheme as compared to various baseline schemes.

中文翻译:


IRS 辅助 SWIPT 的多目标资源分配



在这封信中,我们研究了多用户智能反射表面(IRS)辅助的同步无线信息和电力传输(SWIPT)系统的资源分配。具体地,多天线基站(BS)在IRS的辅助下同时向多个能量收集接收器(EHR)和信息解码接收器(IDR)发送能量和信息信号。在此设置下,我们引入了多目标优化(MOOP)框架,通过联合优化基站和基站的能量/信息波束形成向量,研究数据总速率最大化和总收获能量最大化之间的基本权衡。 IRS 的相移。该 MOOP 问题首先通过 ε 约束方法转换为单目标优化问题 (SOOP),然后通过主化最小化 (MM) 和内近似 (IA) 技术求解。仿真结果揭示了所考虑的竞争目标之间的重要权衡,以及所提出的方案与各种基准方案相比的优越性能。
更新日期:2021-03-12
down
wechat
bug