当前位置:
X-MOL 学术
›
Quantum Topol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual bases in Temperley–Lieb algebras, quantum groups, and a question of Jones
Quantum Topology ( IF 1.0 ) Pub Date : 2018-07-26 , DOI: 10.4171/qt/118 Michael Brannan 1 , Benoît Collins 2
Quantum Topology ( IF 1.0 ) Pub Date : 2018-07-26 , DOI: 10.4171/qt/118 Michael Brannan 1 , Benoît Collins 2
Affiliation
We derive a Laurent series expansion for the structure coefficients appearing in the dual basis corresponding to the Kauffman diagram basis of the Temperley-Lieb algebra $\text{TL}_k(d)$, converging for all complex loop parameters $d$ with $|d| > 2\cos\big(\frac{\pi}{k+1}\big)$. In particular, this yields a new formula for the structure coefficients of the Jones-Wenzl projection in $\text{TL}_k(d)$. The coefficients appearing in each Laurent expansion are shown to have a natural combinatorial interpretation in terms of a certain graph structure we place on non-crossing pairings, and these coefficients turn out to have the remarkable property that they either always positive integers or always negative integers. As an application, we answer affirmatively a question of Vaughan Jones, asking whether every Temperley-Lieb diagram appears with non-zero coefficient in the expansion of each dual basis element in $\text{TL}_k(d)$ (when $d \in \mathbb R \backslash [-2\cos\big(\frac{\pi}{k+1}\big),2\cos\big(\frac{\pi}{k+1}\big)]$). Specializing to Jones-Wenzl projections, this result gives a new proof of a result of Ocneanu, stating that every Temperley-Lieb diagram appears with non-zero coefficient in a Jones-Wenzl projection. Our methods establish a connection with the Weingarten calculus on free quantum groups, and yield as a byproduct improved asymptotics for the free orthogonal Weingarten function.
中文翻译:
Temperley-Lieb 代数中的对偶基、量子群和琼斯问题
我们为出现在对应于 Temperley-Lieb 代数 $\text{TL}_k(d)$ 的 Kauffman 图基的对偶基中出现的结构系数推导出 Laurent 级数展开式,收敛所有复杂循环参数 $d$ 和 $ |d| > 2\cos\big(\frac{\pi}{k+1}\big)$。特别是,这产生了 $\text{TL}_k(d)$ 中 Jones-Wenzl 投影的结构系数的新公式。出现在每个 Laurent 展开式中的系数根据我们放置在非交叉配对上的特定图结构显示出具有自然的组合解释,并且这些系数具有显着的特性,即它们要么总是正整数,要么总是负整数. 作为应用程序,我们肯定地回答了 Vaughan Jones 的问题,询问每个 Temperley-Lieb 图是否在 $\text{TL}_k(d)$ 中每个对偶基元素的展开中都出现非零系数(当 $d \in \mathbb R \backslash [-2\cos\大(\frac{\pi}{k+1}\big),2\cos\big(\frac{\pi}{k+1}\big)]$)。专门针对 Jones-Wenzl 投影,该结果给出了 Ocneanu 结果的新证明,指出每个 Temperley-Lieb 图在 Jones-Wenzl 投影中都以非零系数出现。我们的方法在自由量子群上建立了与 Weingarten 微积分的联系,并且作为副产品产生了改进的自由正交 Weingarten 函数的渐近性。该结果为 Ocneanu 的结果提供了新的证明,说明在 Jones-Wenzl 投影中,每个 Temperley-Lieb 图都以非零系数出现。我们的方法在自由量子群上建立了与 Weingarten 微积分的联系,并且作为副产品产生了改进的自由正交 Weingarten 函数的渐近性。该结果为 Ocneanu 的结果提供了新的证明,说明在 Jones-Wenzl 投影中,每个 Temperley-Lieb 图都以非零系数出现。我们的方法在自由量子群上建立了与 Weingarten 微积分的联系,并且作为副产品产生了改进的自由正交 Weingarten 函数的渐近性。
更新日期:2018-07-26
中文翻译:
Temperley-Lieb 代数中的对偶基、量子群和琼斯问题
我们为出现在对应于 Temperley-Lieb 代数 $\text{TL}_k(d)$ 的 Kauffman 图基的对偶基中出现的结构系数推导出 Laurent 级数展开式,收敛所有复杂循环参数 $d$ 和 $ |d| > 2\cos\big(\frac{\pi}{k+1}\big)$。特别是,这产生了 $\text{TL}_k(d)$ 中 Jones-Wenzl 投影的结构系数的新公式。出现在每个 Laurent 展开式中的系数根据我们放置在非交叉配对上的特定图结构显示出具有自然的组合解释,并且这些系数具有显着的特性,即它们要么总是正整数,要么总是负整数. 作为应用程序,我们肯定地回答了 Vaughan Jones 的问题,询问每个 Temperley-Lieb 图是否在 $\text{TL}_k(d)$ 中每个对偶基元素的展开中都出现非零系数(当 $d \in \mathbb R \backslash [-2\cos\大(\frac{\pi}{k+1}\big),2\cos\big(\frac{\pi}{k+1}\big)]$)。专门针对 Jones-Wenzl 投影,该结果给出了 Ocneanu 结果的新证明,指出每个 Temperley-Lieb 图在 Jones-Wenzl 投影中都以非零系数出现。我们的方法在自由量子群上建立了与 Weingarten 微积分的联系,并且作为副产品产生了改进的自由正交 Weingarten 函数的渐近性。该结果为 Ocneanu 的结果提供了新的证明,说明在 Jones-Wenzl 投影中,每个 Temperley-Lieb 图都以非零系数出现。我们的方法在自由量子群上建立了与 Weingarten 微积分的联系,并且作为副产品产生了改进的自由正交 Weingarten 函数的渐近性。该结果为 Ocneanu 的结果提供了新的证明,说明在 Jones-Wenzl 投影中,每个 Temperley-Lieb 图都以非零系数出现。我们的方法在自由量子群上建立了与 Weingarten 微积分的联系,并且作为副产品产生了改进的自由正交 Weingarten 函数的渐近性。