当前位置:
X-MOL 学术
›
Quantum Topol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fukaya categories of plumbings and multiplicative preprojective algebras
Quantum Topology ( IF 1.0 ) Pub Date : 2019-10-18 , DOI: 10.4171/qt/131 Tolga Etgü 1 , Yankı Lekili 2
Quantum Topology ( IF 1.0 ) Pub Date : 2019-10-18 , DOI: 10.4171/qt/131 Tolga Etgü 1 , Yankı Lekili 2
Affiliation
Given an arbitrary graph $\Gamma$ and non-negative integers $g_v$ for each vertex $v$ of $\Gamma$, let $X_\Gamma$ be the Weinstein $4$-manifold obtained by plumbing copies of $T^*\Sigma_v$ according to this graph, where $\Sigma_v$ is a surface of genus $g_v$. We compute the wrapped Fukaya category of $X_\Gamma$ (with bulk parameters) using Legendrian surgery extending our previous work arXiv:1502.07922 where it was assumed that $g_v=0$ for all $v$ and $\Gamma$ was a tree. The resulting algebra is recognized as the (derived) multiplicative preprojective algebra (and its higher genus version) defined by Crawley-Boevey and Shaw arXiv:math/0404186. Along the way, we find a smaller model for the internal DG-algebra of Ekholm-Ng arXiv:1307.8436 associated to $1$-handles in the Legendrian surgery presentation of Weinstein $4$-manifolds which might be of independent interest.
中文翻译:
管道的深谷范畴和乘法前投影代数
给定任意图 $\Gamma$ 和 $\Gamma$ 的每个顶点 $v$ 的非负整数 $g_v$,让 $X_\Gamma$ 是通过对 $T^* 的管道副本获得的 Weinstein $4$-流形\Sigma_v$ 根据此图,其中 $\Sigma_v$ 是 $g_v$ 属的表面。我们使用 Legendrian 手术计算了 $X_\Gamma$ 的包裹 Fukaya 类别(具有批量参数)扩展了我们之前的工作 arXiv:1502.07922,其中假设所有 $v$ 和 $\Gamma$ 的 $g_v=0$ 是一棵树. 由此产生的代数被认为是由 Crawley-Boevey 和 Shaw arXiv:math/0404186 定义的(派生的)乘法前投影代数(及其更高的属版本)。在此过程中,我们为 Ekholm-Ng arXiv:1307 的内部 DG 代数找到了一个较小的模型。
更新日期:2019-10-18
中文翻译:
管道的深谷范畴和乘法前投影代数
给定任意图 $\Gamma$ 和 $\Gamma$ 的每个顶点 $v$ 的非负整数 $g_v$,让 $X_\Gamma$ 是通过对 $T^* 的管道副本获得的 Weinstein $4$-流形\Sigma_v$ 根据此图,其中 $\Sigma_v$ 是 $g_v$ 属的表面。我们使用 Legendrian 手术计算了 $X_\Gamma$ 的包裹 Fukaya 类别(具有批量参数)扩展了我们之前的工作 arXiv:1502.07922,其中假设所有 $v$ 和 $\Gamma$ 的 $g_v=0$ 是一棵树. 由此产生的代数被认为是由 Crawley-Boevey 和 Shaw arXiv:math/0404186 定义的(派生的)乘法前投影代数(及其更高的属版本)。在此过程中,我们为 Ekholm-Ng arXiv:1307 的内部 DG 代数找到了一个较小的模型。