当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
TiO2 Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-06-10 , DOI: 10.1021/acsami.1c07761 Yuwei Chen 1 , Ying Huang 1 , Haoyu Fu 1 , Yongmin Wu 2 , Dongdong Zhang 3 , Jiayun Wen 1 , Liqiang Huang 1 , Yiming Dai 1 , Yunhui Huang 1 , Wei Luo 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-06-10 , DOI: 10.1021/acsami.1c07761 Yuwei Chen 1 , Ying Huang 1 , Haoyu Fu 1 , Yongmin Wu 2 , Dongdong Zhang 3 , Jiayun Wen 1 , Liqiang Huang 1 , Yiming Dai 1 , Yunhui Huang 1 , Wei Luo 1
Affiliation
Solid-state lithium metal batteries (SSLMBs), using lithium metal as the anode and garnet-structured Li6.5La3Zr1.5Ta0.5O12 (LLZTO) as the electrolyte, are attractive and promising due to their high energy density and safety. However, the interface contact between the lithium metal and LLZTO is a major obstacle to the performance of SSLMBs. Here, we successfully improve the interface wettability by introducing one-dimensional (1D) TiO2 nanofibers into the lithium metal to obtain a Li-lithiated TiO2 composite anode (Li–TiO2). When 10 wt % TiO2 nanofibers are added, the formed composite anode offers a seamless interface contact with LLZTO and enables an interfacial resistance of 27 Ω cm2, which is much smaller than 374 Ω cm2 of pristine lithium metal. Due to the enhanced interface wettability, the symmetric Li–TiO2|LLZTO|Li–TiO2 cell upgrades the critical current density to 2.2 mA cm–2 and endures stable cycling over 550 h. Furthermore, by coupling the Li–TiO2 composite anode with the LiFePO4 cathode, the full cell shows stable cycling performance. This work proves the role of TiO2 nanofibers in enhancing the interface contact between the garnet electrolyte and the lithium metal anode and improving the performance of SSLMBs and provides an effective approach with 1D additives for solving the interface issues.
中文翻译:
用于固态锂电池的TiO 2纳米纤维改性锂金属复合负极
固态锂金属电池 (SSLMBs) 使用锂金属作为阳极,石榴石结构的 Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) 作为电解质,由于其高能量密度和安全性而具有吸引力和前景。然而,锂金属和 LLZTO 之间的界面接触是 SSLMB 性能的主要障碍。在这里,我们通过将一维 (1D) TiO 2纳米纤维引入锂金属中成功地提高了界面润湿性,以获得锂锂化的 TiO 2复合负极(Li-TiO 2)。当 10 wt % TiO 2添加纳米纤维后,形成的复合阳极提供与 LLZTO 的无缝界面接触,并使界面电阻为 27 Ω cm 2,远小于原始锂金属的374 Ω cm 2。由于增强的界面润湿性,对称的 Li-TiO 2 |LLZTO|Li-TiO 2电池将临界电流密度提升至 2.2 mA cm –2并能承受超过 550 小时的稳定循环。此外,通过将 Li-TiO 2复合负极与 LiFePO 4正极结合,全电池表现出稳定的循环性能。这项工作证明了TiO 2的作用 纳米纤维在增强石榴石电解质和锂金属负极之间的界面接触和提高 SSLMB 的性能方面提供了一种有效的一维添加剂解决界面问题的方法。
更新日期:2021-06-23
中文翻译:
用于固态锂电池的TiO 2纳米纤维改性锂金属复合负极
固态锂金属电池 (SSLMBs) 使用锂金属作为阳极,石榴石结构的 Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 (LLZTO) 作为电解质,由于其高能量密度和安全性而具有吸引力和前景。然而,锂金属和 LLZTO 之间的界面接触是 SSLMB 性能的主要障碍。在这里,我们通过将一维 (1D) TiO 2纳米纤维引入锂金属中成功地提高了界面润湿性,以获得锂锂化的 TiO 2复合负极(Li-TiO 2)。当 10 wt % TiO 2添加纳米纤维后,形成的复合阳极提供与 LLZTO 的无缝界面接触,并使界面电阻为 27 Ω cm 2,远小于原始锂金属的374 Ω cm 2。由于增强的界面润湿性,对称的 Li-TiO 2 |LLZTO|Li-TiO 2电池将临界电流密度提升至 2.2 mA cm –2并能承受超过 550 小时的稳定循环。此外,通过将 Li-TiO 2复合负极与 LiFePO 4正极结合,全电池表现出稳定的循环性能。这项工作证明了TiO 2的作用 纳米纤维在增强石榴石电解质和锂金属负极之间的界面接触和提高 SSLMB 的性能方面提供了一种有效的一维添加剂解决界面问题的方法。