当前位置:
X-MOL 学术
›
Geochim. Cosmochim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The kinetics of silica-water reactions
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 1980-11-01 , DOI: 10.1016/0016-7037(80)90220-3 J.D. Rimstidt , H.L. Barnes
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 1980-11-01 , DOI: 10.1016/0016-7037(80)90220-3 J.D. Rimstidt , H.L. Barnes
Abstract A differential rate equation for silica-water reactions from 0–300°C has been derived based on stoichiometry and activities of the reactants in the reaction SiO2(s) + 2H2O(l) = H4SiO4(aq) ( ∂a H 4 SiO 4 ∂t ) P.T.M. = ( A M )(γ H 4 SiO 4 )(k+a SiO 2 a 2 H 2 O − k_a H 4 SiO 4 ) where ( A M ) = (the relative interfacial area between the solid and aqueous phases/the relative mass of water in the system), and k+ and k− are the rate constants for, respectively, dissolution and precipitation. The rate constant for precipitation of all silica phases is log k − = − 0.707 − 2598 T (T, K) and Eact for this reaction is 49.8 kJ mol−1. Corresponding equilibrium constants for this reaction with quartz, cristobalite, or amorphous silica were expressed as log K = a + bT + c T . Using K = k + k − , k was expressed as log k + = a + bT + c T and a corresponding activation energy calculated: a b c Eact(kJ mol -1) Quarts 1.174 -2.028 x 103 -4158 67.4–76.6 α-Cristobalite -0.739 0 -3586 68.7 β-Cristobalite -0.936 0 -3392 65.0 Amorphous silica -0.369 -7.890 x 10-4 3438 60.9–64.9 Upon cooling a silica-saturated solution below the equilibrium temperature, the decreasing solubility of silica causes increasing super saturation, which tends to raise the precipitation rate, but the rate constants rapidly decrease, which tends to lower the precipitation rate. These competing effects cause a maximum rate of precipitation 25–50°C below the saturation temperature. At temperatures below that of the maximum rate, silica is often quenched into solution by very slow reaction rates. Consequently, the quartz geothermometer will give the most accurate results if samples are taken from the hottest, highest flow rate, thermal springs which occur above highly fractured areas.
中文翻译:
二氧化硅-水反应动力学
摘要 基于 SiO2(s) + 2H2O(l) = H4SiO4(aq) ( ∂a H 4 SiO 4 ∂t ) PTM = ( AM )(γ H 4 SiO 4 )(k+a SiO 2 a 2 H 2 O − k_a H 4 SiO 4 ) 其中( AM ) = (固相和水相之间的相对界面面积/系统中水的相对质量),k+和k-分别是溶解和沉淀的速率常数。所有二氧化硅相沉淀的速率常数为 log k − = − 0.707 − 2598 T (T, K),该反应的 Eact 为 49.8 kJ mol−1。与石英、方石英或无定形二氧化硅反应的相应平衡常数表示为 log K = a + bT + c T 。使用 K = k + k − ,k 表示为 log k + = a + bT + c T 并计算出相应的活化能: abc Eact(kJ mol -1) 夸脱 1.174 -2.028 x 103 -4158 67.4–76.6 α-方石英 -0.739 0 -3586 β 68.7 -方石英 -0.936 0 -3392 65.0 无定形二氧化硅 -0.369 -7.890 x 10-4 3438 60.9–64.9 将二氧化硅饱和溶液冷却至平衡温度以下时,二氧化硅溶解度降低导致过饱和度增加,这往往会增加沉淀速率,但速率常数迅速减小,这往往会降低沉淀速率。这些相互竞争的效应会导致在低于饱和温度 25–50°C 时的最大降水率。在低于最大速率的温度下,二氧化硅通常以非常慢的反应速率淬灭成溶液。最后,
更新日期:1980-11-01
中文翻译:
二氧化硅-水反应动力学
摘要 基于 SiO2(s) + 2H2O(l) = H4SiO4(aq) ( ∂a H 4 SiO 4 ∂t ) PTM = ( AM )(γ H 4 SiO 4 )(k+a SiO 2 a 2 H 2 O − k_a H 4 SiO 4 ) 其中( AM ) = (固相和水相之间的相对界面面积/系统中水的相对质量),k+和k-分别是溶解和沉淀的速率常数。所有二氧化硅相沉淀的速率常数为 log k − = − 0.707 − 2598 T (T, K),该反应的 Eact 为 49.8 kJ mol−1。与石英、方石英或无定形二氧化硅反应的相应平衡常数表示为 log K = a + bT + c T 。使用 K = k + k − ,k 表示为 log k + = a + bT + c T 并计算出相应的活化能: abc Eact(kJ mol -1) 夸脱 1.174 -2.028 x 103 -4158 67.4–76.6 α-方石英 -0.739 0 -3586 β 68.7 -方石英 -0.936 0 -3392 65.0 无定形二氧化硅 -0.369 -7.890 x 10-4 3438 60.9–64.9 将二氧化硅饱和溶液冷却至平衡温度以下时,二氧化硅溶解度降低导致过饱和度增加,这往往会增加沉淀速率,但速率常数迅速减小,这往往会降低沉淀速率。这些相互竞争的效应会导致在低于饱和温度 25–50°C 时的最大降水率。在低于最大速率的温度下,二氧化硅通常以非常慢的反应速率淬灭成溶液。最后,